
Texinfo

Texinfo
The GNU Documentation Formatfor Texinfo version 4.5, 4 February 2003

Robert J. ChassellRichard M. Stallman

This manual is for GNU Texinfo (version 4.5, 4 February 2003), a documentation systemthat can produce both online information and a printed manual from a single source.Copyright (C) 1988, 1990, 1991, 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,2003 Free Software Foundation, Inc.Permission is granted to copy, distribute and/or modify this document underthe terms of the GNU Free Documentation License, Version 1.1 or any laterversion published by the Free Software Foundation; with no Invariant Sections,with the Front-Cover texts being \A GNU Manual," and with the Back-CoverTexts as in (a) below. A copy of the license is included in the section entitled\GNU Free Documentation License."(a) The FSF's Back-Cover Text is: \You have freedom to copy and modifythis GNU Manual, like GNU software. Copies published by the Free SoftwareFoundation raise funds for GNU development."
Published by the Free Software Foundation59 Temple Place Suite 330Boston, MA 02111-1307USAISBN 1-882114-67-1
Cover art by Etienne Suvasa.

i

Short Contents

Texinfo Copying Conditions . 2
1 Overview of Texinfo . 3
2 Using Texinfo Mode . 16
3 Beginning a Texinfo File . 29
4 Ending a Texinfo File . 45
5 Chapter Structuring . 48
6 Nodes . 54
7 Menus . 61
8 Cross References . 65
9 Marking Words and Phrases . 75
10 Quotations and Examples . 85
11 Lists and Tables . 93
12 Indices . 100
13 Special Insertions . 105
14 Making and Preventing Breaks . 117
15 De�nition Commands . 121
16 Conditionally Visible Text . 134
17 Internationalization . 140
18 De�ning New Texinfo Commands 142
19 Formatting and Printing Hardcopy 147
20 Creating and Installing Info Files 158
A @-Command List . 172
B Tips and Hints . 191
C Sample Texinfo Files . 196
D Include Files . 202
E Page Headings . 206
F Formatting Mistakes . 210
G Re�lling Paragraphs . 218
H @-Command Syntax . 219
I How to Obtain TEX . 220
J Copying This Manual . 221
Command and Variable Index . 228
Concept Index . 229

ii

Table of Contents

Texinfo Copying Conditions 2
1 Overview of Texinfo . 31.1 Reporting Bugs . 31.2 Using Texinfo . 31.3 Output Formats . 41.4 Info Files . 51.5 Printed Books . 71.6 @-commands . 81.7 General Syntactic Conventions . 91.8 Comments . 101.9 What a Texinfo File Must Have . 101.10 Six Parts of a Texinfo File . 111.11 A Short Sample Texinfo File . 121.12 History . 14
2 Using Texinfo Mode . 162.1 The Usual GNU Emacs Editing Commands 162.2 Inserting Frequently Used Commands . 172.3 Showing the Section Structure of a File 182.4 Updating Nodes and Menus . 192.4.1 Updating Requirements . 222.4.2 Other Updating Commands . 222.5 Formatting for Info . 232.6 Formatting and Printing . 242.7 Texinfo Mode Summary . 25
3 Beginning a Texinfo File 293.1 Sample Texinfo File Beginning . 293.2 Texinfo File Header . 303.2.1 The First Line of a Texinfo File 303.2.2 Start of Header . 313.2.3 @setfilename: Set the output �le name 313.2.4 @settitle: Set the document title 323.2.5 End of Header . 323.3 Document Permissions . 333.3.1 @copying: Declare Copying Permissions 333.3.2 @insertcopying: Include Permissions Text 343.4 Title and Copyright Pages . 343.4.1 @titlepage . 353.4.2 @titlefont, @center, and @sp 353.4.3 @title, @subtitle, and @author 36

iii
3.4.4 Copyright Page . 373.4.5 Heading Generation . 383.4.6 The @headings Command. 383.5 The `Top' Node and Master Menu . 393.5.1 Top Node Example . 403.5.2 Parts of a Master Menu . 403.6 Global Document Commands . 413.6.1 @documentdescription: Summary Text 413.6.2 @setchapternewpage:. 413.6.3 Paragraph Indenting . 423.6.4 @exampleindent: Environment Indenting 433.7 Software Copying Permissions . 43

4 Ending a Texinfo File . 454.1 Printing Indices and Menus . 454.2 Generating a Table of Contents. 464.3 @bye File Ending . 47
5 Chapter Structuring . 485.1 Tree Structure of Sections . 485.2 Structuring Command Types . 485.3 @top . 495.4 @chapter . 495.5 @unnumbered and @appendix . 505.6 @majorheading, @chapheading . 505.7 @section . 505.8 @unnumberedsec, @appendixsec, @heading 515.9 The @subsection Command . 515.10 The @subsection-like Commands . 525.11 The `subsub' Commands . 525.12 @raisesections and @lowersections 53
6 Nodes . 546.1 Two Paths . 546.2 Node and Menu Illustration . 546.3 The @node Command . 566.3.1 Choosing Node and Pointer Names 566.3.2 How to Write an @node Line . 576.3.3 @node Line Tips . 586.3.4 @node Line Requirements . 586.3.5 The First Node . 586.3.6 The @top Sectioning Command 596.4 Creating Pointers with makeinfo . 596.5 @anchor: De�ning Arbitrary Cross-reference Targets 60

iv
7 Menus . 617.1 Writing a Menu . 617.2 The Parts of a Menu . 627.3 Less Cluttered Menu Entry . 627.4 A Menu Example . 627.5 Referring to Other Info Files . 63
8 Cross References . 658.1 Di�erent Cross Reference Commands . 658.2 Parts of a Cross Reference . 658.3 @xref . 678.3.1 @xref with One Argument . 678.3.2 @xref with Two Arguments . 688.3.3 @xref with Three Arguments 688.3.4 @xref with Four and Five Arguments 698.4 Naming a `Top' Node . 718.5 @ref . 718.6 @pxref . 728.7 @inforef . 738.8 @uref{url [, text][, replacement]} 73
9 Marking Words and Phrases 759.1 Indicating De�nitions, Commands, etc. 759.1.1 @code{sample-code} . 769.1.2 @kbd{keyboard-characters} . 779.1.3 @key{key-name} . 789.1.4 @samp{text } . 789.1.5 @verb{<char>text <char>} . 799.1.6 @var{metasyntactic-variable} 799.1.7 @env{environment-variable} . 809.1.8 @file{�le-name} . 809.1.9 @command{command-name} . 819.1.10 @option{option-name} . 819.1.11 @dfn{term} . 819.1.12 @cite{reference} . 819.1.13 @acronym{acronym} . 829.1.14 @url{uniform-resource-locator} 829.1.15 @email{email-address[, displayed-text]} 829.2 Emphasizing Text . 829.2.1 @emph{text } and @strong{text } 839.2.2 @sc{text }: The Small Caps Font 839.2.3 Fonts for Printing, Not Info . 84

v
10 Quotations and Examples 8510.1 Block Enclosing Commands . 8510.2 @quotation . 8610.3 @example: Example Text . 8610.4 @verbatim: Literal Text . 8710.5 @verbatiminclude �le : Include a File Verbatim 8810.6 @lisp: Marking a Lisp Example . 8810.7 @small... Block Commands . 8810.8 @display and @smalldisplay . 8910.9 @format and @smallformat . 8910.10 @exdent: Undoing a Line's Indentation 9010.11 @flushleft and @flushright . 9010.12 @noindent: Omitting Indentation . 9110.13 @cartouche: Rounded Rectangles Around Examples 92
11 Lists and Tables . 9311.1 @itemize: Making an Itemized List . 9311.2 @enumerate: Making a Numbered or Lettered List 9511.3 Making a Two-column Table . 9611.3.1 Using the @table Command 9611.3.2 @ftable and @vtable . 9711.3.3 @itemx . 9711.4 Multi-column Tables . 9811.4.1 Multitable Column Widths . 9811.4.2 Multitable Rows . 99
12 Indices . 10012.1 Making Index Entries . 10012.2 Prede�ned Indices . 10012.3 De�ning the Entries of an Index . 10012.4 Combining Indices . 10212.4.1 @syncodeindex. 10212.4.2 @synindex . 10312.5 De�ning New Indices . 103

vi
13 Special Insertions . 10513.1 Inserting @ and Braces . 10513.1.1 Inserting `@' with @@ . 10513.1.2 Inserting `{' and `}'with @{ and @} 10513.2 Inserting Space . 10513.2.1 Not Ending a Sentence . 10513.2.2 Ending a Sentence . 10613.2.3 Multiple Spaces . 10613.2.4 @dmn{dimension}: Format a Dimension 10713.3 Inserting Accents . 10713.4 Inserting Ellipsis and Bullets . 10813.4.1 @dots{} (. . .) and @enddots{} (. . . .) 10813.4.2 @bullet{} (�) . 10913.5 Inserting TEX and the Copyright Symbol 10913.5.1 @TeX{} (TEX) . 10913.5.2 @copyright{} (c
) . 10913.6 @pounds{} ($): Pounds Sterling . 10913.7 @minus{} (�): Inserting a Minus Sign 10913.8 @math: Inserting Mathematical Expressions 11013.9 Glyphs for Examples . 11013.9.1 Glyphs Summary . 11013.9.2 @result{} ()): Indicating Evaluation 11113.9.3 @expansion{} (7!): Indicating an Expansion . . 11113.9.4 @print{} (a): Indicating Printed Output 11113.9.5 @error{} (error): Indicating an Error Message. 11213.9.6 @equiv{} (�): Indicating Equivalence 11213.9.7 @point{} (?): Indicating Point in a Bu�er 11313.10 Footnotes . 11313.10.1 Footnote Commands . 11413.10.2 Footnote Styles . 11413.11 Inserting Images . 115
14 Making and Preventing Breaks 11714.1 Break Commands . 11714.2 @*: Generate Line Breaks . 11714.3 @- and @hyphenation: Helping TEX Hyphenate 11814.4 @w{text }: Prevent Line Breaks . 11814.5 @tie{}: Inserting an Unbreakable Space 11814.6 @sp n: Insert Blank Lines . 11914.7 @page: Start a New Page . 11914.8 @group: Prevent Page Breaks . 11914.9 @need mils : Prevent Page Breaks . 120

vii
15 De�nition Commands 12115.1 The Template for a De�nition . 12115.2 Optional and Repeated Arguments . 12215.3 Two or More `First' Lines . 12315.4 The De�nition Commands . 12315.4.1 Functions and Similar Entities 12315.4.2 Variables and Similar Entities 12515.4.3 Functions in Typed Languages. 12615.4.4 Variables in Typed Languages 12715.4.5 Object-Oriented Programming 12815.4.6 Data Types . 13115.5 Conventions for Writing De�nitions . 13115.6 A Sample Function De�nition . 131
16 Conditionally Visible Text 13416.1 Conditional Commands . 13416.2 Conditional Not Commands. 13416.3 Raw Formatter Commands . 13516.4 @set, @clear, and @value . 13616.4.1 @set and @value . 13616.4.2 @ifset and @ifclear . 13716.4.3 @value Example. 138
17 Internationalization . 14017.1 @documentlanguage cc : Set the Document Language . . . 14017.2 @documentencoding enc: Set Input Encoding 141
18 De�ning New Texinfo Commands 14218.1 De�ning Macros . 14218.2 Invoking Macros . 14318.3 Macro Details . 14418.4 `@alias new=existing ' . 14418.5 `definfoenclose': Customized Highlighting 145

viii
19 Formatting and Printing Hardcopy 14719.1 Use TEX . 14719.2 Format with tex and texindex . 14719.3 Format with texi2dvi . 14819.4 Shell Print Using lpr -d . 14919.5 From an Emacs Shell . 15019.6 Formatting and Printing in Texinfo Mode 15019.7 Using the Local Variables List . 15219.8 TEX Formatting Requirements Summary 15219.9 Preparing for TEX . 15319.10 Overfull \hboxes" . 15419.11 Printing \Small" Books . 15519.12 Printing on A4 Paper . 15519.13 @pagesizes [width][, height]: Custom Page Sizes 15519.14 Cropmarks and Magni�cation . 15619.15 PDF Output. 157
20 Creating and Installing Info Files 15820.1 Creating an Info File . 15820.1.1 makeinfo Preferred . 15820.1.2 Running makeinfo from a Shell 15820.1.3 Options for makeinfo . 15820.1.4 Pointer Validation . 16220.1.5 Running makeinfo Within Emacs. 16320.1.6 The texinfo-format... Commands 16420.1.7 Batch Formatting . 16420.1.8 Tag Files and Split Files . 16520.1.9 Generating HTML . 16620.2 Installing an Info File . 16720.2.1 The Directory File `dir' . 16720.2.2 Listing a New Info File. 16720.2.3 Info Files in Other Directories 16820.2.4 Installing Info Directory Files. 16920.2.5 Invoking install-info . 170
Appendix A @-Command List 172
Appendix B Tips and Hints 191
Appendix C Sample Texinfo Files 196C.1 Short Sample . 196C.2 GNU Sample Texts . 197C.3 Verbatim Copying License . 200C.4 All-permissive Copying License . 200

ix
Appendix D Include Files 202D.1 How to Use Include Files . 202D.2 texinfo-multiple-files-update . 202D.3 Include Files Requirements . 203D.4 Sample File with @include . 203D.5 Evolution of Include Files . 204
Appendix E Page Headings 206E.1 Standard Heading Formats . 206E.2 Specifying the Type of Heading . 207E.3 How to Make Your Own Headings . 208
Appendix F Formatting Mistakes 210F.1 Catching Errors with Info Formatting 210F.2 Catching Errors with TEX Formatting 211F.3 Using texinfo-show-structure . 213F.4 Using occur . 214F.5 Finding Badly Referenced Nodes . 214F.5.1 Running Info-validate . 215F.5.2 Creating an Unsplit File . 215F.5.3 Tagifying a File . 216F.5.4 Splitting a File Manually . 216
Appendix G Re�lling Paragraphs 218
Appendix H @-Command Syntax 219
Appendix I How to Obtain TEX 220
Appendix J Copying This Manual 221J.1 GNU Free Documentation License . 221J.1.1 ADDENDUM: How to use this License for yourdocuments . 227
Command and Variable Index 228
Concept Index . 229

1

Documentation is like sex: when it is good, it is very, very good; and when itis bad, it is better than nothing. |Dick Brandon

Texinfo Copying Conditions 2

Texinfo Copying Conditions

The programs currently being distributed that relate to Texinfo include makeinfo,info, texindex, and `texinfo.tex'. These programs are free; this means that everyoneis free to use them and free to redistribute them on a free basis. The Texinfo-relatedprograms are not in the public domain; they are copyrighted and there are restrictionson their distribution, but these restrictions are designed to permit everything that a goodcooperating citizen would want to do. What is not allowed is to try to prevent others fromfurther sharing any version of these programs that they might get from you.Speci�cally, we want to make sure that you have the right to give away copies of theprograms that relate to Texinfo, that you receive source code or else can get it if you wantit, that you can change these programs or use pieces of them in new free programs, andthat you know you can do these things.To make sure that everyone has such rights, we have to forbid you to deprive anyoneelse of these rights. For example, if you distribute copies of the Texinfo related programs,you must give the recipients all the rights that you have. You must make sure that they,too, receive or can get the source code. And you must tell them their rights.Also, for our own protection, we must make certain that everyone �nds out that thereis no warranty for the programs that relate to Texinfo. If these programs are modi�edby someone else and passed on, we want their recipients to know that what they have isnot what we distributed, so that any problems introduced by others will not re
ect on ourreputation.The precise conditions of the licenses for the programs currently being distributed thatrelate to Texinfo are found in the General Public Licenses that accompany them. Thismanual speci�cally is covered by the GNU Free Documentation License (see Section J.1[GNU Free Documentation License], page 221).

Chapter 1: Overview of Texinfo 3

1 Overview of Texinfo

Texinfo1 is a documentation system that uses a single source �le to produce bothonline information and printed output. This means that instead of writing two di�erentdocuments, one for the online information and the other for a printed work, you need writeonly one document. Therefore, when the work is revised, you need revise only that onedocument.
1.1 Reporting Bugs

We welcome bug reports and suggestions for any aspect of the Texinfo system, pro-grams, documentation, installation, anything. Please email them to bug-texinfo@gnu.org.You can get the latest version of Texinfo from ftp://ftp.gnu.org/gnu/texinfo/ and itsmirrors worldwide.For bug reports, please include enough information for the maintainers to reproducethe problem. Generally speaking, that means:
� the version number of Texinfo and the program(s) or manual(s) involved.
� hardware and operating system names and versions.
� the contents of any input �les necessary to reproduce the bug.
� a description of the problem and samples of any erroneous output.
� any unusual options you gave to configure.
� anything else that you think would be helpful.

When in doubt whether something is needed or not, include it. It's better to includetoo much than to leave out something important.Patches are most welcome; if possible, please make them with `diff -c' (see section\Overview" in Comparing and Merging Files) and include `ChangeLog' entries (see section\Change Log" in The GNU Emacs Manual).When sending patches, if possible please do not encode or split them in any way; it'smuch easier to deal with one plain text message, however large, than many small ones.GNU shar is a convenient way of packaging multiple and/or binary �les for email.
1.2 Using Texinfo

Using Texinfo, you can create a printed document with the normal features of a book,including chapters, sections, cross references, and indices. From the same Texinfo source�le, you can create a menu-driven, online Info �le with nodes, menus, cross references, andindices. You can also create from that same source �le an HTML output �le suitable foruse with a web browser, or an XML �le. The GNU Emacs Manual is a good example of aTexinfo �le, as is this manual.
1 The �rst syllable of \Texinfo" is pronounced like \speck", not \hex". This odd pronunciation is derived

from, but is not the same as, the pronunciation of T EX. In the word T EX, the `X' is actually the Greek
letter \chi" rather than the English letter \ex". Pronounce T EX as if the `X' were the last sound in the
name `Bach'; but pronounce Texinfo as if the `x' were a `k'. Spell \Texinfo" with a capital \T" and
the other letters in lower case.

mailto:bug-texinfo@gnu.org
ftp://ftp.gnu.org/gnu/texinfo/
ftp://ftp.gnu.org/gnu/sharutils/

Chapter 1: Overview of Texinfo 4

To make a printed document, you process a Texinfo source �le with the TEX typesettingprogram (but the Texinfo language is very di�erent from and much stricter than TEX's usuallanguages, plain TEX and LaTEX). This creates a DVI �le that you can typeset and printas a book or report (see Chapter 19 [Hardcopy], page 147).To output an Info �le, process your Texinfo source with the makeinfo utility. You caninstall the result in your Info tree (see Section 20.2 [Installing an Info File], page 167).To output an HTML �le, run makeinfo --html on your Texinfo source. You can (forexample) install the result on a web site.To output an XML �le, run makeinfo --xml on your Texinfo source. To output Doc-Book (a particular form of XML), run makeinfo --docbook. If you want to convert fromDocbook to Texinfo, please see http://docbook2X.sourceforge.net/.TEX works with virtually all printers; Info works with virtually all computer terminals;the HTML output works with virtually all web browsers. Thus Texinfo can be used byalmost any computer user.A Texinfo source �le is a plain ascii �le containing text interspersed with @-commands(words preceded by an `@') that tell the typesetting and formatting programs what to do.You may edit a Texinfo �le with any text editor; but it is especially convenient to use GNUEmacs since that editor has a special mode, called Texinfo mode, that provides variousTexinfo-related features. (See Chapter 2 [Texinfo Mode], page 16.)Before writing a Texinfo source �le, you should learn about nodes, menus, cross refer-ences, and the rest, for example by reading this manual.You can use Texinfo to create both online help and printed manuals; moreover, Texinfois freely redistributable. For these reasons, Texinfo is the o�cial documentation format ofthe GNU project. More information is available at the GNU documentation web page.
1.3 Output Formats

Here is a brief overview of the output formats currently supported by Texinfo.
Info (Generated via makeinfo.) This format is a plain text transliteration of theTexinfo source. It uses control characters to separate nodes and provide othernavigational information. See the next section (see Section 1.4 [Info Files],page 6) for more details on this format. The Emacs Info subsystem (see section\Getting Started" in Info), and the standalone info program (see section \infostandalone" in GNU Info), among others, can read these �les. See Chapter 20[Creating and Installing Info Files], page 158.
Plain text (Generated via makeinfo --no-headers.) This is almost the same as Infooutput, except the navigational control characters are omitted.
HTML (Generated via makeinfo --html.) This is the Hyper Text Markup Languagethat has become the most commonly used language for writing documents onthe World Wide Web. Web browsers, such as Mozilla, Lynx, and Emacs-W3,can render this language online. There are many versions of HTML; makeinfotries to use a subset of the language that can be interpreted by any com-mon browser. For details of the HTML language and much related informa-

http://docbook2X.sourceforge.net/
http://www.gnu.org/doc/

Chapter 1: Overview of Texinfo 5

tion, see http://www.w3.org/MarkUp/. See Section 20.1.9 [Generating HTML],page 166.
DVI (Generated via texi2dvi.) This DeVice Independent binary format isoutput by the TEX typesetting program (http://tug.org). It is then readby a DVI `driver', which writes the actual device-speci�c commands thatcan be viewed or printed, notably Dvips for translation to PostScript (seesection \dvips invocation" in Dvips) and Xdvi for viewing on an X display(http://sourceforge.net/projects/xdvi/). See Chapter 19 [Hardcopy],page 147.
PDF (Generated via texi2dvi --pdf.) This format, based on PostScript, wasdeveloped by Adobe Systems for document interchange. It is intended to beplatform-independent and easily viewable, among other design goals; for a dis-cussion, see http://tug.org/tugboat/Articles/tb22-3/tb72beebeI.pdf.Texinfo uses the pdftex program, a variant of TEX, to output pdf; seehttp://tug.org/applications/pdftex. See Section 19.15 [PDF Output],page 157.
XML (Generated via makeinfo --xml.) XML is a generic syntax speci�cation us-able for any sort of content (see, for example, http://www.w3.org/XML/). Themakeinfo xml output, unlike all the formats above, interprets very little of theTexinfo source. Rather, it merely translates the Texinfo markup commandsinto XML syntax, for processing by further XML tools. The particular syn-tax output is de�ned in the �le `texinfo.dtd' included in the Texinfo sourcedistribution.
DocBook (Generated via makeinfo --docbook.) This is an XML format of long standingused primarily for technical documentation. See http://www.docbook.org/.

From time to time, proposals are made to generate traditional Unix man pages fromTexinfo source. However, because man pages have a very strict conventional format, gen-erating a good man page requires a completely di�erent source than the typical Texinfoapplications of writing a good user tutorial and/or a good reference manual. This makesgenerating man pages incompatible with the Texinfo design goal of not having to documentthe same information in di�erent ways for di�erent output formats. You might as well justwrite the man page directly.
Man pages still have their place, and if you wish to support them, you may �nd theprogram help2man to be useful; it generates a traditional man page from the `--help'output of a program. In fact, this is currently used to generate man pages for the programsin the Texinfo distribution. It is GNU software written by Brendan O'Dea, available fromftp://ftp.gnu.org/gnu/help2man/.
If you are a programmer and would like to contribute to the GNU project by imple-menting additional output formats for Texinfo, that would be excellent. But please do notwrite a separate translator texi2foo for your favorite format foo! That is the hard way todo the job, and makes extra work in subsequent maintenance, since the Texinfo language iscontinually being enhanced and updated. Instead, the best approach is modify makeinfoto generate the new format.

http://www.w3.org/MarkUp/
http://tug.org
http://sourceforge.net/projects/xdvi/
http://tug.org/tugboat/Articles/tb22-3/tb72beebeI.pdf
http://tug.org/applications/pdftex
http://www.w3.org/XML/
http://www.docbook.org/
ftp://ftp.gnu.org/gnu/help2man/

Chapter 1: Overview of Texinfo 6

1.4 Info Files
An Info �le is a Texinfo �le formatted so that the Info documentation reading programcan operate on it. (makeinfo and texinfo-format-buffer are two commands that converta Texinfo �le into an Info �le.)Info �les are divided into pieces called nodes, each of which contains the discussion ofone topic. Each node has a name, and contains both text for the user to read and pointersto other nodes, which are identi�ed by their names. The Info program displays one nodeat a time, and provides commands with which the user can move to other related nodes.Each node of an Info �le may have any number of child nodes that describe subtopicsof the node's topic. The names of child nodes are listed in a menu within the parent node;this allows you to use certain Info commands to move to one of the child nodes. Generally,an Info �le is organized like a book. If a node is at the logical level of a chapter, its childnodes are at the level of sections; likewise, the child nodes of sections are at the level ofsubsections.All the children of any one parent are linked together in a bidirectional chain of `Next'and `Previous' pointers. The `Next' pointer provides a link to the next section, and the`Previous' pointer provides a link to the previous section. This means that all the nodesthat are at the level of sections within a chapter are linked together. Normally the order inthis chain is the same as the order of the children in the parent's menu. Each child noderecords the parent node name as its `Up' pointer. The last child has no `Next' pointer, andthe �rst child has the parent both as its `Previous' and as its `Up' pointer.2The book-like structuring of an Info �le into nodes that correspond to chapters, sections,and the like is a matter of convention, not a requirement. The `Up', `Previous', and `Next'pointers of a node can point to any other nodes, and a menu can contain any other nodes.Thus, the node structure can be any directed graph. But it is usually more comprehensibleto follow a structure that corresponds to the structure of chapters and sections in a printedbook or report.In addition to menus and to `Next', `Previous', and `Up' pointers, Info provides pointersof another kind, called references, that can be sprinkled throughout the text. This is usuallythe best way to represent links that do not �t a hierarchical structure.Usually, you will design a document so that its nodes match the structure of chaptersand sections in the printed output. But occasionally there are times when this is not rightfor the material being discussed. Therefore, Texinfo uses separate commands to specify thenode structure for the Info �le and the section structure for the printed output.Generally, you enter an Info �le through a node that by convention is named `Top'.This node normally contains just a brief summary of the �le's purpose, and a large menuthrough which the rest of the �le is reached. From this node, you can either traverse the�le systematically by going from node to node, or you can go to a speci�c node listed inthe main menu, or you can search the index menus and then go directly to the node thathas the information you want. Alternatively, with the standalone Info program, you canspecify speci�c menu items on the command line (see section \Top" in Info).

2 In some documents, the �rst child has no `Previous' pointer. Occasionally, the last child has the node
name of the next following higher level node as its `Next' pointer.

Chapter 1: Overview of Texinfo 7

If you want to read through an Info �le in sequence, as if it were a printed manual,you can hit hSPCi repeatedly, or you get the whole �le with the advanced Info command g
* . (See Info �le `info', node `Expert'.)The `dir' �le in the `info' directory serves as the departure point for the whole Infosystem. From it, you can reach the `Top' nodes of each of the documents in a complete Infosystem.If you wish to refer to an Info �le in a URI, you can use the (uno�cial) syntax exem-pli�ed in the following. This works with Emacs/W3, for example:

info:///usr/info/emacs#Dissociated%20Pressinfo:emacs#Dissociated%20Pressinfo://localhost/usr/info/emacs#Dissociated%20PressThe info program itself does not follow URI's of any kind.
1.5 Printed Books

A Texinfo �le can be formatted and typeset as a printed book or manual. To do this,you need TEX, a powerful, sophisticated typesetting program written by Donald Knuth.3A Texinfo-based book is similar to any other typeset, printed work: it can have atitle page, copyright page, table of contents, and preface, as well as chapters, numbered orunnumbered sections and subsections, page headers, cross references, footnotes, and indices.You can use Texinfo to write a book without ever having the intention of converting itinto online information. You can use Texinfo for writing a printed novel, and even to writea printed memo, although this latter application is not recommended since electronic mailis so much easier.TEX is a general purpose typesetting program. Texinfo provides a �le `texinfo.tex'that contains information (de�nitions or macros) that TEX uses when it typesets a Texinfo�le. (`texinfo.tex' tells TEX how to convert the Texinfo @-commands to TEX commands,which TEX can then process to create the typeset document.) `texinfo.tex' contains thespeci�cations for printing a document. You can get the latest version of `texinfo.tex'from ftp://ftp.gnu.org/gnu/texinfo/texinfo.tex.In the United States, documents are most often printed on 8.5 inch by 11 inch pages(216 mm by 280 mm); this is the default size. But you can also print for 7 inch by 9.25 inchpages (178 mm by 235 mm, the @smallbook size; or on A4 or A5 size paper (@afourpaper,@afivepaper). (See Section 19.11 [Printing \Small" Books], page 155. Also, see Sec-tion 19.12 [Printing on A4 Paper], page 155.)By changing the parameters in `texinfo.tex', you can change the size of the printeddocument. In addition, you can change the style in which the printed document is formatted;for example, you can change the sizes and fonts used, the amount of indentation for eachparagraph, the degree to which words are hyphenated, and the like. By changing thespeci�cations, you can make a book look digni�ed, old and serious, or light-hearted, youngand cheery.
3 You can also use thetexi2roff program if you do not have TEX; since Texinfo is designed for use with

TEX, texi2roff is not described here. texi2roff is not part of the standard GNU distribution and is
not maintained or up-to-date with all the Texinfo features described in this manual.

ftp://ftp.gnu.org/gnu/texinfo/texinfo.tex
ftp://tug.org/texi2roff.tar.gz

Chapter 1: Overview of Texinfo 8

TEX is freely distributable. It is written in a superset of Pascal called WEB and canbe compiled either in Pascal or (by using a conversion program that comes with the TEXdistribution) in C. (See section \TEX Mode" in The GNU Emacs Manual, for informationabout TEX.)TEX is very powerful and has a great many features. Because a Texinfo �le must beable to present information both on a character-only terminal in Info form and in a typesetbook, the formatting commands that Texinfo supports are necessarily limited.To get a copy of TEX, see Appendix I [How to Obtain TEX], page 220.
1.6 @-commands

In a Texinfo �le, the commands that tell TEX how to typeset the printed manual andtell makeinfo and texinfo-format-buffer how to create an Info �le are preceded by `@';they are called @-commands. For example, @node is the command to indicate a node and@chapter is the command to indicate the start of a chapter.
Please note:All the @-commands, with the exception of the @TeX{} command,must be written entirely in lower case.The Texinfo @-commands are a strictly limited set of constructs. The strict limits makeit possible for Texinfo �les to be understood both by TEX and by the code that convertsthem into Info �les. You can display Info �les on any terminal that displays alphabetic andnumeric characters. Similarly, you can print the output generated by TEX on a wide varietyof printers.Depending on what they do or what arguments4 they take, you need to write @-commands on lines of their own or as part of sentences:

� Write a command such as @quotation at the beginning of a line as the only text onthe line. (@quotation begins an indented environment.)
� Write a command such as @chapter at the beginning of a line followed by the com-mand's arguments, in this case the chapter title, on the rest of the line. (@chaptercreates chapter titles.)
� Write a command such as @dots{} wherever you wish but usually within a sentence.(@dots{} creates dots . . .)
� Write a command such as @code{sample-code } wherever you wish (but usually withina sentence) with its argument, sample-codein this example, between the braces. (@codemarks text as being code.)
� Write a command such as @example on a line of its own; write the body-text onfollowing lines; and write the matching @end command, @end example in this case, ona line of its own after the body-text. (@example . . . @end example indents and typesetsbody-text as an example.) It's usually ok to indent environment commands like this,
4 The word argument comes from the way it is used in mathematics and does not refer to a dispute

between two people; it refers to the information presented to the command. According to the Oxford
English Dictionary , the word derives from the Latin for to make clear, prove; thus it came to mean
`the evidence o�ered as proof', which is to say, `the information o�ered', which led to its mathematical
meaning. In its other thread of derivation, the word came to mean `to assert in a manner against which
others may make counter assertions', which led to the meaning of `argument' as a dispute.

Chapter 1: Overview of Texinfo 9

but in complicated and hard-to-de�ne circumstances the extra spaces cause extra spaceto appear in the output, so beware.
As a general rule, a command requires braces if it mingles among other text; but it doesnot need braces if it starts a line of its own. The non-alphabetic commands, such as @:, areexceptions to the rule; they do not need braces.

As you gain experience with Texinfo, you will rapidly learn how to write the di�erentcommands: the di�erent ways to write commands make it easier to write and read Texinfo�les than if all commands followed exactly the same syntax. (For details about @-commandsyntax, see Appendix H [@-Command Syntax], page 219.)
1.7 General Syntactic Conventions

This section describes the general conventions used in all Texinfo documents.
� All printable ascii characters except `@', `{' and `}' can appear in a Texinfo �le andstand for themselves. `@' is the escape character which introduces commands, while`{' and `}' are used to surround arguments to certain commands. To put one of thesespecial characters into the document, put xan `@' character in front of it, like this: `@@',`@{', and `@}'.
� Separate paragraphs with one or more blank lines. Currently Texinfo only recognizesnewline characters as end of line, not the CRLF sequence used on some systems; so a

blank line means exactly two consecutive newlines. Sometimes blank lines are usefulor convenient in other cases as well; you can use the @noindent to inhibit paragraphindentation if required (see Section 10.12 [@noindent], page 91).
� Use doubled single-quote characters to begin and end quotations: ``...''. (Texinfotakes this convention from TEX.) TEX converts two single quotes to left- and right-handdoubled quotation marks, \like this", and Info converts doubled single-quote charactersto ascii double-quotes: ``...'' becomes "...".
� Use three hyphens in a row, `---', for a dash|like this. In TEX, a single or doublehyphen produces a printed dash that is shorter than the usual typeset dash. Inforeduces three hyphens to two for display on the screen.
� If you mark o� a region of the Texinfo �le with the @iftex and @end iftex commands,that region will appear only in the printed copy; in that region, you can use certaincommands borrowed from plain TEX that you cannot use in Info. Conversely, textsurrounded by @ifnottex and @end ifnottex will appear in all output formats exceptTEX.Each of the other output formats (html, info, plaintext, xml) have an analogous pairof commands. See Chapter 16 [Conditionals], page 134.
�

Caution: Do not use tab characters in a Texinfo �le (except in verbatimmodes)! TEX uses variable-width fonts, which means that it is impracticalat best to de�ne a tab to work in all circumstances. Consequently, TEXtreats tabs like single spaces, and that is not what they look like. Further-more, makeinfo does nothing special with tabs, and thus a tab character

Chapter 1: Overview of Texinfo 10

in your input �le may appear di�erently in the output, for example, inindented text.To avoid this problem, Texinfo mode causes GNU Emacs to insert multiplespaces when you press the hTABi key.Also, you can run untabify in Emacs to convert tabs in a region to multiplespaces.
1.8 Comments

You can write comments in a Texinfo �le that will not appear in either the Info �le orthe printed manual by using the @comment command (which may be abbreviated to @c).Such comments are for the person who revises the Texinfo �le. All the text on a line thatfollows either @comment or @c is a comment; the rest of the line does not appear in eitherthe Info �le or the printed manual.Often, you can write the @comment or @c in the middle of a line, and only the text thatfollows after the @comment or @c command does not appear; but some commands, such as@settitle and @setfilename, work on a whole line. You cannot use @comment or @c in aline beginning with such a command.You can write long stretches of text that will not appear in either the Info �le or theprinted manual by using the @ignore and @end ignore commands. Write each of thesecommands on a line of its own, starting each command at the beginning of the line. Textbetween these two commands does not appear in the processed output. You can use @ignoreand @end ignore for writing comments.Text enclosed by @ignore or by failing @ifset or @ifclear conditions is ignored inthe sense that it will not contribute to the formatted output. However, TEX and makeinfomust still parse the ignored text, in order to understand when to stop ignoring text fromthe source �le; that means that you may still get error messages if you have invalid Texinfocommands within ignored text.
1.9 What a Texinfo File Must Have

By convention, the namea of a Texinfo �le ends with (in order of preference) one of theextensions `.texinfo', `.texi', `.txi', or `.tex'. The longer extensions are preferred sincethey describe more clearly to a human reader the nature of the �le. The shorter extensionsare for operating systems that cannot handle long �le names.In order to be made into a printed manual and an Info �le, a Texinfo �le must beginwith lines like this:
\input texinfo@setfilename info-file-name@settitle name-of-manualThe contents of the �le follow this beginning, and then you must end a Texinfo �le with aline like this:
@byeHere's an explanation:

Chapter 1: Overview of Texinfo 11

� The `\input texinfo' line tells TEX to use the `texinfo.tex' �le, which tells TEX howto translate the Texinfo @-commands into TEX typesetting commands. (Note the useof the backslash, `\'; this is correct for TEX.)
� The @setfilename line provides a name for the Info �le and tells TEX to open auxiliary�les. All text before @setfilename is ignored!

� The @settitle line speci�es a title for the page headers (or footers) of the printed man-ual, and the default document description for the `<head>' in HTML format. Strictlyspeaking, @settitle is optional|if you don't mind your document being titled `Unti-tled'.
� The @bye line at the end of the �le on a line of its own tells the formatters that the �leis ended and to stop formatting.

Typically, you will not use quite such a spare format, but will include mode settingand start-of-header and end-of-header lines at the beginning of a Texinfo �le, like this:
\input texinfo @c -*-texinfo-*-@c %**start of header@setfilename info-file-name@settitle name-of-manual@c %**end of headerIn the �rst line, `-*-texinfo-*-' causes Emacs to switch into Texinfo mode when you editthe �le.The @c lines which surround the @setfilename and @settitle lines are optional, butyou need them in order to run TEX or Info on just part of the �le. (See Section 3.2.2 [Startof Header], page 31.)Furthermore, you will usually provide a Texinfo �le with a title page, indices, and thelike, all of which are explained in this manual. But the minimum, which can be useful forshort documents, is just the three lines at the beginning and the one line at the end.

1.10 Six Parts of a Texinfo File
Generally, a Texinfo �le contains more than the minimal beginning and end describedin the previous section|it usually contains the six parts listed below. These are describedfully in the following sections.

1. Header The Header names the �le, tells TEX which de�nitions �le to use, and othersuch housekeeping tasks.
2. Summary and CopyrightThe Summary and Copyright segment describes the document and containsthe copyright notice and copying permissions. This is done with the @copyingcommand.
3. Title and CopyrightThe Title and Copyright segment contains the title and copyright pages for theprinted manual. The segment must be enclosed between @titlepage and @endtitlepage commands. The title and copyright page appear only in the printedmanual.

Chapter 1: Overview of Texinfo 12

4. `Top' Node and Master MenuThe `Top' node starts o� the online output; it does not appear in the printedmanual. We recommend including the copying permissions here as well as thesegments above. And it contains at least a top-level menu listing the chapters,and possibly a Master Menu listing all the nodes in the entire document.
5. Body The Body of the document is typically structured like a traditional book orencyclopedia, but it may be free form.
6. End The End segment contains commands for printing indices and generating thetable of contents, and the @bye command on a line of its own.
1.11 A Short Sample Texinfo File

Here is a very short but complete Texinfo �le, in the six conventional parts enumeratedin the previous section, so you can see how Texinfo source appears in practice. The �rstthree parts of the �le, from `\input texinfo' through to `@end titlepage', look moreintimidating than they are: most of the material is standard boilerplate; when writing amanual, you simply change the names as appropriate.See Chapter 3 [Beginning a File], page 29, for full documentation on the commandslisted here. See Section C.2 [GNU Sample Texts], page 197, for the full texts to be used inGNU manuals.In the following, the sample text is indented ; comments on it are not. The complete�le, without interspersed comments, is shown in Section C.1 [Short Sample Texinfo File],page 196.
Part 1: Header

The header does not appear in either the Info �le or the printed output. It sets variousparameters, including the name of the Info �le and the title used in the header.
\input texinfo @c -*-texinfo-*-@c %**start of header@setfilename sample.info@settitle Sample Manual 1.0@c %**end of header

Part 2: Summary Description and Copyright

A real manual includes more text here, according to the license under which it is distributed.See Section C.2 [GNU Sample Texts], page 197.
@copyingThis is a short example of a complete Texinfo file, version 1.0.
Copyright @copyright{} 2003 Free Software Foundation, Inc.@end copying

Chapter 1: Overview of Texinfo 13

Part 3: Titlepage, Contents, Copyright

The titlepage segment does not appear in the online output, only in the printed manual.We use the @insertcopying command to include the permission text from the previoussection, instead of writing it out again; it is output on the back of the title page. The@contents command generates a table of contents.
@titlepage@title Sample Title
@c The following two commands start the copyright page.@page@vskip 0pt plus 1filll@insertcopying@end titlepage
@c Output the table of contents at the beginning.@contents

Part 4: `Top' Node and Master Menu

The `Top' node contains the master menu for the Info �le. Since the printed manual usesa table of contents rather than a menu, it excludes the `Top' node. We also include thecopying text again for the bene�t of online readers. Since the copying text begins with abrief description of the manual, no other text is needed in this case. The `@top' commanditself helps makeinfo determine the relationships between nodes.
@ifnottex@node Top@top Short Sample
@insertcopying@end ifnottex
@menu* First Chapter:: The first chapter is theonly chapter in this sample.* Index:: Complete index.@end menu

Part 5: The Body of the Document

The body segment contains all the text of the document, but not the indices or table ofcontents. This example illustrates a node and a chapter containing an enumerated list.
@node First Chapter@chapter First Chapter
@cindex chapter, first

Chapter 1: Overview of Texinfo 14

This is the first chapter.@cindex index entry, another
Here is a numbered list.
@enumerate@itemThis is the first item.
@itemThis is the second item.@end enumerate

Part 6: The End of the Document

The end segment contains commands for generating an index in a node and unnumberedchapter of its own, and the @bye command that marks the end of the document.
@node Index@unnumbered Index
@printindex cp
@bye

Some Results

Here is what the contents of the �rst chapter of the sample look like:
This is the �rst chapter.Here is a numbered list.1. This is the �rst item.2. This is the second item.

1.12 History
Richard M. Stallman invented the Texinfo format, wrote the initial processors, andcreated Edition 1.0 of this manual. Robert J. Chassell greatly revised and extended themanual, starting with Edition 1.1. Brian Fox was responsible for the standalone Texinfodistribution until version 3.8, and wrote the standalone makeinfo and info programs. KarlBerry has continued maintenance since Texinfo 3.8 (manual edition 2.22).Our thanks go out to all who helped improve this work, particularly the indefatigableEli Zaretskii and Andreas Schwab, who have provided patches beyond counting. Fran�coisPinard and David D. Zuhn, tirelessly recorded and reported mistakes and obscurities. ZackWeinberg did the impossible by implementing the macro syntax in `texinfo.tex'. Specialthanks go to Melissa Weisshaus for her frequent reviews of nearly similar editions. Dozens

Chapter 1: Overview of Texinfo 15

of others have contributed patches and suggestions, they are gratefully acknowledged in the`ChangeLog' �le. Our mistakes are our own.A bit of history: in the 1970's at CMU, Brian Reid developed a program and formatnamed Scribe to mark up documents for printing. It used the @ character to introducecommands, as Texinfo does. Much more consequentially, it strived to describe documentcontents rather than formatting, an idea wholeheartedly adopted by Texinfo.Meanwhile, people at MIT developed another, not too dissimilar format called Bolio.This then was converted to using TEX as its typesetting language: BoTEX. The earliestBoTEX version seems to have been 0.02 on October 31, 1984.BoTEX could only be used as a markup language for documents to be printed, not foronline documents. Richard Stallman (RMS) worked on both Bolio and BoTEX. He alsodeveloped a nifty on-line help format called Info, and then combined BoTEX and Info tocreate Texinfo, a mark up language for text that is intended to be read both online and asprinted hard copy.

Chapter 2: Using Texinfo Mode 16

2 Using Texinfo Mode

You may edit a Texinfo �le with any text editor you choose. A Texinfo �le is no di�erentfrom any other ascii �le. However, GNU Emacs comes with a special mode, called Texinfomode, that provides Emacs commands and tools to help ease your work.This chapter describes features of GNU Emacs' Texinfo mode but not any features ofthe Texinfo formatting language. So if you are reading this manual straight through fromthe beginning, you may want to skim through this chapter brie
y and come back to it afterreading succeeding chapters which describe the Texinfo formatting language in detail.Texinfo mode provides special features for working with Texinfo �les. You can:
� Insert frequently used @-commands.
� Automatically create @node lines.
� Show the structure of a Texinfo source �le.
� Automatically create or update the `Next', `Previous', and `Up' pointers of a node.
� Automatically create or update menus.
� Automatically create a master menu.
� Format a part or all of a �le for Info.
� Typeset and print part or all of a �le.

Perhaps the two most helpful features are those for inserting frequently used@-commands and for creating node pointers and menus.
2.1 The Usual GNU Emacs Editing Commands

In most cases, the usual Text mode commands work the same in Texinfo mode as theydo in Text mode. Texinfo mode adds new editing commands and tools to GNU Emacs'general purpose editing features. The major di�erence concerns �lling. In Texinfo mode,the paragraph separation variable and syntax table are rede�ned so that Texinfo commandsthat should be on lines of their own are not inadvertently included in paragraphs. Thus, the
M-q (fill-paragraph) command will re�ll a paragraph but not mix an indexing commandon a line adjacent to it into the paragraph.In addition, Texinfo mode sets the page-delimiter variable to the value of texinfo-chapter-level-regexp; by default, this is a regular expression matching the commands forchapters and their equivalents, such as appendices. With this value for the page delimiter,you can jump from chapter title to chapter title with the C-x] (forward-page) and C-x
[(backward-page) commands and narrow to a chapter with the C-x p (narrow-to-page)command. (See section \Pages" in The GNU Emacs Manual, for details about the pagecommands.)You may name a Texinfo �le however you wish, but the convention is to end a Texinfo�le name with one of the extensions `.texinfo', `.texi', `.txi', or `.tex'. A longer exten-sion is preferred, since it is explicit, but a shorter extension may be necessary for operatingsystems that limit the length of �le names. GNU Emacs automatically enters Texinfo modewhen you visit a �le with a `.texinfo', `.texi' or `.txi' extension. Also, Emacs switches

Chapter 2: Using Texinfo Mode 17

to Texinfo mode when you visit a �le that has `-*-texinfo-*-' in its �rst line. If ever youare in another mode and wish to switch to Texinfo mode, type M-x texinfo-mode.Like all other Emacs features, you can customize or enhance Texinfo mode as you wish.In particular, the keybindings are very easy to change. The keybindings described here arethe default or standard ones.
2.2 Inserting Frequently Used Commands

Texinfo mode provides commands to insert various frequently used @-commands intothe bu�er. You can use these commands to save keystrokes.The insert commands are invoked by typing C-c twice and then the �rst letter of the@-command:
C-c C-c c
M-x texinfo-insert- @codeInsert @code{} and put the cursor between the braces.
C-c C-c d
M-x texinfo-insert- @dfnInsert @dfn{} and put the cursor between the braces.
C-c C-c e
M-x texinfo-insert- @endInsert @end and attempt to insert the correct following word, such as `example'or `table'. (This command does not handle nested lists correctly, but insertsthe word appropriate to the immediately preceding list.)
C-c C-c i
M-x texinfo-insert- @itemInsert @item and put the cursor at the beginning of the next line.
C-c C-c k
M-x texinfo-insert- @kbdInsert @kbd{} and put the cursor between the braces.
C-c C-c n
M-x texinfo-insert- @nodeInsert @node and a comment line listing the sequence for the `Next', `Previous',and `Up' nodes. Leave point after the @node.
C-c C-c o
M-x texinfo-insert- @noindentInsert @noindent and put the cursor at the beginning of the next line.
C-c C-c s
M-x texinfo-insert- @sampInsert @samp{} and put the cursor between the braces.
C-c C-c t
M-x texinfo-insert- @tableInsert @table followed by a hSPCi and leave the cursor after the hSPCi .

Chapter 2: Using Texinfo Mode 18

C-c C-c v
M-x texinfo-insert- @varInsert @var{} and put the cursor between the braces.
C-c C-c x
M-x texinfo-insert- @exampleInsert @example and put the cursor at the beginning of the next line.
C-c C-c {
M-x texinfo-insert-bracesInsert {} and put the cursor between the braces.
C-c C-c }
C-c C-c]
M-x up-list Move from between a pair of braces forward past the closing brace. Typing

C-c C-c] is easier than typing C-c C-c }, which is, however, more mnemonic;hence the two keybindings. (Also, you can move out from between braces bytyping C-f .)
To put a command such as @code{...} around an existing word, position the cursor infront of the word and type C-u 1 C-c C-c c. This makes it easy to edit existing plain text.The value of the pre�x argument tells Emacs how many words following point to includebetween braces|`1' for one word, `2' for two words, and so on. Use a negative argument toenclose the previous word or words. If you do not specify a pre�x argument, Emacs insertsthe @-command string and positions the cursor between the braces. This feature works onlyfor those @-commands that operate on a word or words within one line, such as @kbd and@var.
This set of insert commands was created after analyzing the frequency with whichdi�erent @-commands are used in the GNU Emacs Manual and the GDB Manual . If youwish to add your own insert commands, you can bind a keyboard macro to a key, useabbreviations, or extend the code in `texinfo.el'.
C-c C-c C-d (texinfo-start-menu-description) is an insert command that worksdi�erently from the other insert commands. It inserts a node's section or chapter title inthe space for the description in a menu entry line. (A menu entry has three parts, theentry name, the node name, and the description. Only the node name is required, but adescription helps explain what the node is about. See Section 7.2 [The Parts of a Menu],page 62.)
To use texinfo-start-menu-description, position point in a menu entry line andtype C-c C-c C-d. The command looks for and copies the title that goes with the nodename, and inserts the title as a description; it positions point at beginning of the insertedtext so you can edit it. The function does not insert the title if the menu entry line alreadycontains a description.
This command is only an aid to writing descriptions; it does not do the whole job. Youmust edit the inserted text since a title tends to use the same words as a node name but auseful description uses di�erent words.

Chapter 2: Using Texinfo Mode 19

2.3 Showing the Section Structure of a File
You can show the section structure of a Texinfo �le by using the C-c C-s command(texinfo-show-structure). This command shows the section structure of a Texinfo �leby listing the lines that begin with the @-commands for @chapter, @section, and the like.It constructs what amounts to a table of contents. These lines are displayed in anotherbu�er called the `*Occur*' bu�er. In that bu�er, you can position the cursor over one ofthe lines and use the C-c C-c command (occur-mode-goto-occurrence), to jump to thecorresponding spot in the Texinfo �le.

C-c C-s
M-x texinfo-show-structureShow the @chapter, @section, and such lines of a Texinfo �le.
C-c C-c
M-x occur-mode-goto-occurrenceGo to the line in the Texinfo �le corresponding to the line under the cursor inthe `*Occur*' bu�er.

If you call texinfo-show-structure with a pre�x argument by typing C-u C-c C-s,it will list not only those lines with the @-commands for @chapter, @section, and the like,but also the @node lines. You can use texinfo-show-structure with a pre�x argument tocheck whether the `Next', `Previous', and `Up' pointers of an @node line are correct.Often, when you are working on a manual, you will be interested only in the structureof the current chapter. In this case, you can mark o� the region of the bu�er that youare interested in by using the C-x n n (narrow-to-region) command and texinfo-show-structure will work on only that region. To see the whole bu�er again, use C-x n w(widen). (See section \Narrowing" in The GNU Emacs Manual, for more informationabout the narrowing commands.)In addition to providing the texinfo-show-structure command, Texinfo mode setsthe value of the page delimiter variable to match the chapter-level @-commands. This enablesyou to use the C-x] (forward-page) and C-x [(backward-page) commands to moveforward and backward by chapter, and to use the C-x p (narrow-to-page) command tonarrow to a chapter. See section \Pages" in The GNU Emacs Manual, for more informationabout the page commands.
2.4 Updating Nodes and Menus

Texinfo mode provides commands for automatically creating or updating menus andnode pointers. The commands are called \update" commands because their most frequentuse is for updating a Texinfo �le after you have worked on it; but you can use them toinsert the `Next', `Previous', and `Up' pointers into an @node line that has none and tocreate menus in a �le that has none.If you do not use the updating commands, you need to write menus and node pointersby hand, which is a tedious task.You can use the updating commands to:
� insert or update the `Next', `Previous', and `Up' pointers of a node,

Chapter 2: Using Texinfo Mode 20

� insert or update the menu for a section, and
� create a master menu for a Texinfo source �le.

You can also use the commands to update all the nodes and menus in a region or in awhole Texinfo �le.
The updating commands work only with conventional Texinfo �les, which are struc-tured hierarchically like books. In such �les, a structuring command line must follow closelyafter each @node line, except for the `Top' @node line. (A structuring command line is aline beginning with @chapter, @section, or other similar command.)
You can write the structuring command line on the line that follows immediately afteran @node line or else on the line that follows after a single @comment line or a single @ifinfoline. You cannot interpose more than one line between the @node line and the structuringcommand line; and you may interpose only an @comment line or an @ifinfo line.
Commands which work on a whole bu�er require that the `Top' node be followed by anode with an @chapter or equivalent-level command. The menu updating commands willnot create a main or master menu for a Texinfo �le that has only @chapter-level nodes!The menu updating commands only create menus within nodes for lower level nodes. Tocreate a menu of chapters, you must provide a `Top' node.
The menu updating commands remove menu entries that refer to other Info �les sincethey do not refer to nodes within the current bu�er. This is a de�ciency. Rather than usemenu entries, you can use cross references to refer to other Info �les. None of the updatingcommands a�ect cross references.
Texinfo mode has �ve updating commands that are used most often: two are forupdating the node pointers or menu of a single node (or a region); two are for updatingevery node pointer and menu in a �le; and one, the texinfo-master-menu command, isfor creating a master menu for a complete �le, and optionally, for updating every node andmenu in the whole Texinfo �le.
The texinfo-master-menu command is the primary command:

C-c C-u m
M-x texinfo-master-menuCreate or update a master menu that includes all the other menus (incorporat-ing the descriptions from pre-existing menus, if any).With an argument (pre�x argument, C-u, if interactive), �rst create or updateall the nodes and all the regular menus in the bu�er before constructing themaster menu. (See Section 3.5 [The Top Node and Master Menu], page 39, formore about a master menu.)For texinfo-master-menu to work, the Texinfo �le must have a `Top' nodeand at least one subsequent node.After extensively editing a Texinfo �le, you can type the following:

C-u M-x texinfo-master-menuor C-u C-c C-u mThis updates all the nodes and menus completely and all at once.

Chapter 2: Using Texinfo Mode 21

The other major updating commands do smaller jobs and are designed for the personwho updates nodes and menus as he or she writes a Texinfo �le.The commands are:
C-c C-u C-n
M-x texinfo-update-nodeInsert the `Next', `Previous', and `Up' pointers for the node that point is within(i.e., for the @node line preceding point). If the @node line has pre-existing`Next', `Previous', or `Up' pointers in it, the old pointers are removed and newones inserted. With an argument (pre�x argument, C-u, if interactive), thiscommand updates all @node lines in the region (which is the text between pointand mark).
C-c C-u C-m
M-x texinfo-make-menuCreate or update the menu in the node that point is within. With an argument(C-u as pre�x argument, if interactive), the command makes or updates menusfor the nodes which are either within or a part of the region.Whenever texinfo-make-menu updates an existing menu, the descriptions fromthat menu are incorporated into the new menu. This is done by copying de-scriptions from the existing menu to the entries in the new menu that have thesame node names. If the node names are di�erent, the descriptions are notcopied to the new menu.
C-c C-u C-e
M-x texinfo-every-node-updateInsert or update the `Next', `Previous', and `Up' pointers for every node in thebu�er.
C-c C-u C-a
M-x texinfo-all-menus-updateCreate or update all the menus in the bu�er. With an argument (C-u as pre�xargument, if interactive), �rst insert or update all the node pointers beforeworking on the menus.If a master menu exists, the texinfo-all-menus-update command updates it;but the command does not create a new master menu if none already exists.(Use the texinfo-master-menu command for that.)When working on a document that does not merit a master menu, you can typethe following:C-u C-c C-u C-aor C-u M-x texinfo-all-menus-updateThis updates all the nodes and menus.

The texinfo-column-for-description variable speci�es the column to which menudescriptions are indented. By default, the value is 32 although it is often useful to reduce itto as low as 24. You can set the variable with the M-x edit-options command (see section\Editing Variable Values" in The GNU Emacs Manual) or with the M-x set-variablecommand (see section \Examining and Setting Variables" in The GNU Emacs Manual).

Chapter 2: Using Texinfo Mode 22

Also, the texinfo-indent-menu-description command may be used to indent exist-ing menu descriptions to a speci�ed column. Finally, if you wish, you can use the texinfo-insert-node-lines command to insert missing @node lines into a �le. (See Section 2.4.2[Other Updating Commands], page 22, for more information.)
2.4.1 Updating Requirements

To use the updating commands, you must organize the Texinfo �le hierarchically withchapters, sections, subsections, and the like. When you construct the hierarchy of themanual, do not `jump down' more than one level at a time: you can follow the `Top' nodewith a chapter, but not with a section; you can follow a chapter with a section, but not witha subsection. However, you may `jump up' any number of levels at one time|for example,from a subsection to a chapter.Each @node line, with the exception of the line for the `Top' node, must be followed bya line with a structuring command such as @chapter, @section, or @unnumberedsubsec.Each @node line/structuring-command line combination must look either like this:@node Comments, Minimum, Conventions, Overview@comment node-name, next, previous, up@section Commentsor like this (without the @comment line):@node Comments, Minimum, Conventions, Overview@section Commentsor like this (without the explicit node pointers):@node Comments@section CommentsIn this example, `Comments' is the name of both the node and the section. The next node iscalled `Minimum' and the previous node is called `Conventions'. The `Comments' section iswithin the `Overview' node, which is speci�ed by the `Up' pointer. (Instead of an @commentline, you may also write an @ifinfo line.)If a �le has a `Top' node, it must be called `top' or `Top' and be the �rst node in the�le. The menu updating commands create a menu of sections within a chapter, a menu ofsubsections within a section, and so on. This means that you must have a `Top' node if youwant a menu of chapters.Incidentally, the makeinfo command will create an Info �le for a hierarchically orga-nized Texinfo �le that lacks `Next', `Previous' and `Up' pointers. Thus, if you can be surethat your Texinfo �le will be formatted with makeinfo, you have no need for the updatenode commands. (See Section 20.1 [Creating an Info File], page 158, for more informa-tion about makeinfo.) However, both makeinfo and the texinfo-format-... commandsrequire that you insert menus in the �le.
2.4.2 Other Updating Commands

In addition to the �ve major updating commands, Texinfo mode possesses several lessfrequently used updating commands:

Chapter 2: Using Texinfo Mode 23

M-x texinfo-insert-node-linesInsert @node lines before the @chapter, @section, and other sectioning com-mands wherever they are missing throughout a region in a Texinfo �le.
With an argument (C-u as pre�x argument, if interactive), the texinfo-insert-node-lines command not only inserts @node lines but also inserts thechapter or section titles as the names of the corresponding nodes. In addition,it inserts the titles as node names in pre-existing @node lines that lack names.Since node names should be more concise than section or chapter titles, youmust manually edit node names so inserted.
For example, the following marks a whole bu�er as a region and inserts @nodelines and titles throughout:

C-x h C-u M-x texinfo-insert-node-lines
This command inserts titles as node names in @node lines; the texinfo-start-menu-description command (see Section 2.2 [Inserting], page 17) inserts titlesas descriptions in menu entries, a di�erent action. However, in both cases, youneed to edit the inserted text.

M-x texinfo-multiple-files-updateUpdate nodes and menus in a document built from several separate �les. With
C-u as a pre�x argument, create and insert a master menu in the outer �le.With a numeric pre�x argument, such as C-u 2, �rst update all the menusand all the `Next', `Previous', and `Up' pointers of all the included �les beforecreating and inserting a master menu in the outer �le. The texinfo-multiple-files-update command is described in the appendix on @include �les. SeeSection D.2 [texinfo-multiple-files-update], page 202.

M-x texinfo-indent-menu-descriptionIndent every description in the menu following point to the speci�ed column.You can use this command to give yourself more space for descriptions. With anargument (C-u as pre�x argument, if interactive), the texinfo-indent-menu-description command indents every description in every menu in the region.However, this command does not indent the second and subsequent lines of amulti-line description.
M-x texinfo-sequential-node-updateInsert the names of the nodes immediately following and preceding the currentnode as the `Next' or `Previous' pointers regardless of those nodes' hierarchicallevel. This means that the `Next' node of a subsection may well be the nextchapter. Sequentially ordered nodes are useful for novels and other documentsthat you read through sequentially. (However, in Info, the g * command lets youlook through the �le sequentially, so sequentially ordered nodes are not strictlynecessary.) With an argument (pre�x argument, if interactive), the texinfo-sequential-node-update command sequentially updates all the nodes in theregion.

Chapter 2: Using Texinfo Mode 24

2.5 Formatting for Info
Texinfo mode provides several commands for formatting part or all of a Texinfo �le forInfo. Often, when you are writing a document, you want to format only part of a �le|thatis, a region.You can use either the texinfo-format-region or the makeinfo-region commandto format a region:

C-c C-e C-r
M-x texinfo-format-region
C-c C-m C-r
M-x makeinfo-regionFormat the current region for Info.

You can use either the texinfo-format-buffer or the makeinfo-buffer commandto format a whole bu�er:
C-c C-e C-b
M-x texinfo-format-buffer
C-c C-m C-b
M-x makeinfo-bufferFormat the current bu�er for Info.

For example, after writing a Texinfo �le, you can type the following:C-u C-c C-u mor C-u M-x texinfo-master-menuThis updates all the nodes and menus. Then type the following to create an Info �le:C-c C-m C-bor M-x makeinfo-bufferFor TEX or the Info formatting commands to work, the �le must include a line thathas @setfilename in its header.See Section 20.1 [Creating an Info File], page 158, for details about Info formatting.
2.6 Formatting and Printing

Typesetting and printing a Texinfo �le is a multi-step process in which you �rst createa �le for printing (called a DVI �le), and then print the �le. Optionally, you may alsocreate indices. To do this, you must run the texindex command after �rst running thetex typesetting command; and then you must run the tex command again. Or else runthe texi2dvi command which automatically creates indices as needed (see Section 19.3[Format with texi2dvi], page 149).Often, when you are writing a document, you want to typeset and print only partof a �le to see what it will look like. You can use the texinfo-tex-region and relatedcommands for this purpose. Use the texinfo-tex-buffer command to format all of abu�er.

Chapter 2: Using Texinfo Mode 25

C-c C-t C-b
M-x texinfo-tex-bufferRun texi2dvi on the bu�er. In addition to running TEX on the bu�er, thiscommand automatically creates or updates indices as needed.
C-c C-t C-r
M-x texinfo-tex-regionRun TEX on the region.
C-c C-t C-i
M-x texinfo-texindexRun texindex to sort the indices of a Texinfo �le formatted with texinfo-tex-region. The texinfo-tex-region command does not run texindex au-tomatically; it only runs the tex typesetting command. You must run thetexinfo-tex-region command a second time after sorting the raw index �leswith the texindex command. (Usually, you do not format an index whenyou format a region, only when you format a bu�er. Now that the texi2dvicommand exists, there is little or no need for this command.)
C-c C-t C-p
M-x texinfo-tex-printPrint the �le (or the part of the �le) previously formatted with texinfo-tex-buffer or texinfo-tex-region.

For texinfo-tex-region or texinfo-tex-buffer to work, the �le must start with a`\input texinfo' line and must include an @settitle line. The �le must end with @bye ona line by itself. (When you use texinfo-tex-region, you must surround the @settitleline with start-of-header and end-of-header lines.)See Chapter 19 [Hardcopy], page 147, for a description of the other TEX related com-mands, such as tex-show-print-queue.
2.7 Texinfo Mode Summary

In Texinfo mode, each set of commands has default keybindings that begin with thesame keys. All the commands that are custom-created for Texinfo mode begin with C-c.The keys are somewhat mnemonic.
Insert Commands

The insert commands are invoked by typing C-c twice and then the �rst letter of the@-command to be inserted. (It might make more sense mnemonically to use C-c C-i , for`custom insert', but C-c C-c is quick to type.)
C-c C-c c Insert `@code'.C-c C-c d Insert `@dfn'.C-c C-c e Insert `@end'.C-c C-c i Insert `@item'.C-c C-c n Insert `@node'.C-c C-c s Insert `@samp'.

Chapter 2: Using Texinfo Mode 26

C-c C-c v Insert `@var'.C-c C-c { Insert braces.C-c C-c]C-c C-c } Move out of enclosing braces.
C-c C-c C-d Insert a node's section titlein the space for the descriptionin a menu entry line.

Show Structure

The texinfo-show-structure command is often used within a narrowed region.
C-c C-s List all the headings.

The Master Update Command

The texinfo-master-menu command creates a master menu; and can be used to up-date every node and menu in a �le as well.
C-c C-u mM-x texinfo-master-menuCreate or update a master menu.
C-u C-c C-u m With C-u as a pre�x argument, �rstcreate or update all nodes and regularmenus, and then create a master menu.

Update Pointers

The update pointer commands are invoked by typing C-c C-u and then either C-n fortexinfo-update-node or C-e for texinfo-every-node-update.
C-c C-u C-n Update a node.C-c C-u C-e Update every node in the bu�er.

Update Menus

Invoke the update menu commands by typing C-c C-u and then either C-mfor texinfo-make-menu or C-a for texinfo-all-menus-update. To update both nodes and menus atthe same time, precede C-c C-u C-a with C-u.
C-c C-u C-m Make or update a menu.
C-c C-u C-a Make or update allmenus in a bu�er.
C-u C-c C-u C-a With C-u as a pre�x argument,�rst create or update all nodes andthen create or update all menus.

Chapter 2: Using Texinfo Mode 27

Format for Info

The Info formatting commands that are written in Emacs Lisp are invoked by typing
C-c C-e and then either C-r for a region or C-b for the whole bu�er.The Info formatting commands that are written in C and based on the makeinfoprogram are invoked by typing C-c C-m and then either C-r for a region or C-b for thewhole bu�er.Use the texinfo-format... commands:

C-c C-e C-r Format the region.C-c C-e C-b Format the bu�er.Use makeinfo:
C-c C-m C-r Format the region.C-c C-m C-b Format the bu�er.C-c C-m C-l Recenter the makeinfo output bu�er.C-c C-m C-k Kill the makeinfo formatting job.

Typeset and Print

The TEX typesetting and printing commands are invoked by typing C-c C-t and thenanother control command: C-r for texinfo-tex-region, C-b for texinfo-tex-buffer,and so on.
C-c C-t C-r Run TEX on the region.C-c C-t C-b Run texi2dvi on the bu�er.C-c C-t C-i Run texindex.C-c C-t C-p Print the DVI �le.C-c C-t C-q Show the print queue.C-c C-t C-d Delete a job from the print queue.C-c C-t C-k Kill the current TEX formatting job.C-c C-t C-x Quit a currently stopped TEX formatting job.C-c C-t C-l Recenter the output bu�er.

Other Updating Commands

The remaining updating commands do not have standard keybindings because theyare rarely used.
M-x texinfo-insert-node-linesInsert missing @node lines in region.With C-u as a pre�x argument,use section titles as node names.
M-x texinfo-multiple-files-updateUpdate a multi-�le document.With C-u 2 as a pre�x argument,create or update all nodes and menusin all included �les �rst.

Chapter 2: Using Texinfo Mode 28

M-x texinfo-indent-menu-descriptionIndent descriptions.
M-x texinfo-sequential-node-updateInsert node pointers in strict sequence.

Chapter 3: Beginning a Texinfo File 29

3 Beginning a Texinfo File

Certain pieces of information must be provided at the beginning of a Texinfo �le, suchas the name for the output �le(s), the title of the document, and the Top node.This chapter expands on the minimal complete Texinfo source �le previously given (seeSection 1.10 [Six Parts], page 11).
3.1 Sample Texinfo File Beginning

The following sample shows what is needed. The elements given here are explained inmore detail in the following sections. Other commands are often included at the beginningof Texinfo �les, but the ones here are the most critical.See Section C.2 [GNU Sample Texts], page 197, for the full texts to be used in GNUmanuals.
\input texinfo @c -*-texinfo-*-@c %**start of header@setfilename infoname.info@settitle name-of-manual version@c %**end of header
@copyingThis manual is for program, version version .
Copyright @copyright{} years copyright-owner .
@quotationPermission is granted to ...@end quotation@end copying
@titlepage@title name-of-manual-when-printed@subtitle subtitle-if-any@subtitle second-subtitle@author author

@c The following two commands@c start the copyright page.@page@vskip 0pt plus 1filll@insertcopying
Published by ...@end titlepage
@c So the toc is printed in the right place.@contents

Chapter 3: Beginning a Texinfo File 30

@ifnottex@node Top@top title

@insertcopying@end ifnottex
@menu* First Chapter:: Getting started ...* Second Chapter::* Copying:: Your rights and freedoms.@end menu
@node First Chapter@chapter First Chapter
@cindex first chapter@cindex chapter, first...

3.2 Texinfo File Header
Texinfo �les start with at least three lines that provide Info and TEX with necessaryinformation. These are the \input texinfo line, the @settitle line, and the @setfilenameline. Also, if you want to format just part of the Texinfo �le, you must write the @settitleand @setfilename lines between start-of-header and end-of-header lines. The start- andend-of-header lines are optional, but they do no harm, so you might as well always includethem.Any command that a�ects document formatting as a whole makes sense to include inthe header. @synindex (see Section 12.4.2 [synindex], page 103), for instance, is anothercommand often included in the header. See Section C.2 [GNU Sample Texts], page 197, forcomplete sample texts.Thus, the beginning of a Texinfo �le generally looks like this:
\input texinfo @c -*-texinfo-*-@c %**start of header@setfilename sample.info@settitle Sample Manual 1.0@c %**end of header

3.2.1 The First Line of a Texinfo File

Every Texinfo �le that is to be the top-level input to TEX must begin with a line thatlooks like this:

Chapter 3: Beginning a Texinfo File 31

\input texinfo @c -*-texinfo-*-This line serves two functions:1. When the �le is processed by TEX, the `\input texinfo' command tells TEX to loadthe macros needed for processing a Texinfo �le. These are in a �le called `texinfo.tex',which should have been installed on your system along with either the TEX or Texinfosoftware. TEX uses the backslash, `\', to mark the beginning of a command, exactlyas Texinfo uses `@'. The `texinfo.tex' �le causes the switch from `\' to `@'; before theswitch occurs, TEX requires `\', which is why it appears at the beginning of the �le.2. When the �le is edited in GNU Emacs, the `-*-texinfo-*-' mode speci�cation tellsEmacs to use Texinfo mode.
3.2.2 Start of Header

A start-of-header line is a Texinfo comment that looks like this:
@c %**start of headerWrite the start-of-header line on the second line of a Texinfo �le. Follow the start-of-header line with @setfilename and @settitle lines and, optionally, with other commandsthat globally a�ect the document formatting, such as @synindex or @footnotestyle; andthen by an end-of-header line (see Section 3.2.5 [End of Header], page 33).The start- and end-of-header lines allow you to format only part of a Texinfo �le forInfo or printing. See Section 20.1.6 [texinfo-format commands], page 164.The odd string of characters, `%**', is to ensure that no other comment is accidentallytaken for a start-of-header line. You can change it if you wish by setting the tex-start-of-header and/or tex-end-of-header Emacs variables. See Section 19.6 [Texinfo ModePrinting], page 150.

3.2.3 @setfilename: Set the output �le name

In order to serve as the primary input �le for either makeinfo or TEX, a Texinfo �lemust contain a line that looks like this:
@setfilename info-file-nameWrite the @setfilename command at the beginning of a line and follow it on the sameline by the Info �le name. Do not write anything else on the line; anything on the lineafter the command is considered part of the �le name, including what would otherwise bea comment.The Info formatting commands ignore everything written before the @setfilenameline, which is why the very �rst line of the �le (the \input line) does not show up in theoutput.The @setfilename line speci�es the name of the output �le to be generated. Thisname must be di�erent from the name of the Texinfo �le. There are two conventions forchoosing the name: you can either remove the extension (such as `.texi') entirely from theinput �le name, or, preferably, replace it with the `.info' extension.Although an explicit `.info' extension is preferable, some operating systems cannothandle long �le names. You can run into a problem even when the �le name you specify is

Chapter 3: Beginning a Texinfo File 32

itself short enough. This occurs because the Info formatters split a long Info �le into shortindirect sub�les, and name them by appending `-1', `-2', . . . , `-10', `-11', and so on, to theoriginal �le name. (See Section 20.1.8 [Tag and Split Files], page 165.) The sub�le name`texinfo.info-10', for example, is too long for old systems with a 14-character limit on�lenames; so the Info �le name for this document is `texinfo' rather than `texinfo.info'.When makeinfo is running on operating systems such as MS-DOS which impose severelimits on �le names, it may remove some characters from the original �le name to leaveenough space for the sub�le su�x, thus producing �les named `texin-10', `gcc.i12', etc.When producing HTML output, makeinfo will replace any extension with `html', oradd `.html' if the given name has no extension.The @setfilename line produces no output when you typeset a manual with TEX,but it is nevertheless essential: it opens the index, cross-reference, and other auxiliary �lesused by Texinfo, and also reads `texinfo.cnf' if that �le is present on your system (seeSection 19.9 [Preparing for TEX], page 153).
3.2.4 @settitle : Set the document title

In order to be made into a printed manual, a Texinfo �le must contain a line that lookslike this:@settitle titleWrite the @settitle command at the beginning of a line and follow it on the same lineby the title. This tells TEX the title to use in a header or footer. Do not write anything elseon the line; anything on the line after the command is considered part of the title, includingwhat would otherwise be a comment.The @settitle command should precede everything that generates actual output inTEX.In the HTML �le produced by makeinfo, title also serves as the document `<title>'and the default document description in the `<head>' part; see Section 3.6.1 [documentde-scription], page 41, for how to change that.The title in the @settitle command does not a�ect the title as it appears on the titlepage. Thus, the two do not need not match exactly. A practice we recommend is to includethe version or edition number of the manual in the @settitle title; on the title page, theversion number generally appears as a @subtitle so it would be omitted from the @title.(See Section 3.4.1 [titlepage], page 35.)Conventionally, when TEX formats a Texinfo �le for double-sided output, the title isprinted in the left-hand (even-numbered) page headings and the current chapter title isprinted in the right-hand (odd-numbered) page headings. (TEX learns the title of eachchapter from each @chapter command.) By default, no page footer is printed.Even if you are printing in a single-sided style, TEX looks for an @settitle commandline, in case you include the manual title in the heading.TEX prints page headings only for that text that comes after the @end titlepagecommand in the Texinfo �le, or that comes after an @headings command that turns onheadings. (See Section 3.4.6 [The @headings Command], page 39, for more information.)You may, if you wish, create your own, customized headings and footings. See Appen-dix E [Headings], page 206, for a detailed discussion of this.

Chapter 3: Beginning a Texinfo File 33

3.2.5 End of Header

Follow the header lines with an end-of-header line, which is a Texinfo comment thatlooks like this:
@c %**end of header

See Section 3.2.2 [Start of Header], page 31.
3.3 Document Permissions

The copyright notice and copying permissions for a document need to appear in severalplaces in the various Texinfo output formats. Therefore, Texinfo provides a command(@copying) to declare this text once, and another command (@insertcopying) to insertthe text at appropriate points.
3.3.1 @copying: Declare Copying Permissions

The @copying command should be given very early in the document; the recommendedlocation is right after the header material (see Section 3.2 [Texinfo File Header], page 30).It conventionally consists of a sentence or two about what the program is, identi�cation ofthe documentation itself, the legal copyright line, and the copying permissions. Here is askeletal example:
@copyingThis manual is for program (version version , updated
date), which ...
Copyright @copyright{} years copyright-owner .
@quotationPermission is granted to ...@end quotation@end copying

The @quotation has no legal signi�cance; it's there to improve readability in somecontexts.
See Section C.2 [GNU Sample Texts], page 197, for the full text to be used in GNUmanuals. See Section J.1 [GNU Free Documentation License], page 221, for the license itselfunder which GNU and other free manuals are distributed. You need to include the licenseas an appendix to your document.
The text of @copying is output as a comment at the beginning of Info, HTML, andXML output �les. It is not output implicitly in plain text or TEX; it's up to you to use@insertcopying to emit the copying information. See the next section for details.
The @copyright{} command generates a `c' inside a circle in output formats thatsupport this (print and HTML). In the other formats (Info and plain text), it generates`(C)'. The copyright notice itself has the following legally de�ned sequence:

Chapter 3: Beginning a Texinfo File 34

Copyright c
 years copyright-owner .The word `Copyright' must always be written in English, even if the document isotherwise written in another language. This is due to international law.The list of years should include all years in which a version was completed (even if itwas released in a subsequent year). Ranges are not allowed; each year must be written outindividually and in full, separated by commas.The copyright owner (or owners) is whoever holds legal copyright on the work. In thecase of works assigned to the FSF, the owner is `Free Software Foundation, Inc.'.The copyright `line' may actually be split across multiple lines, both in the sourcedocument and in the output. This often happens for documents with a long history, havingmany di�erent years of publication.See section \Copyright Notices" in GNU Maintenance Instructions, for additional in-formation.
3.3.2 @insertcopying : Include Permissions Text

The @insertcopying command is simply written on a line by itself, like this:@insertcopyingThis inserts the text previously de�ned by @copying. To meet legal requirements, itmust be used on the copyright page in the printed manual (see Section 3.4.4 [Copyright],page 37).We also strongly recommend using @insertcopying in the Top node of your manual(see Section 3.5 [The Top Node], page 39), although it is not required legally. Here's why:The @copying command itself causes the permissions text to appear in an Info �lebefore the �rst node. The text is also copied into the beginning of each split Info output�le, as is legally necessary. This location implies a human reading the manual using Infodoes not see this text (except when using the advanced Info command g *). Therefore, anexplicit @insertcopying in the Top node makes it apparent to readers that the manual isfree. Similarly, the @copying text is automatically included at the beginning of each HTMLoutput �le, as an HTML comment. Again, this text is not visible (unless the reader viewsthe HTML source). And therefore again, the @insertcopying in the Top node is valuablebecause it makes the copying permissions visible and thus promotes freedom.The permissions text de�ned by @copying also appears automatically at the beginningof the XML output �le.
3.4 Title and Copyright Pages

In hard copy output, the manual's name and author are usually printed on a title page.Copyright information is usually printed on the back of the title page.The title and copyright pages appear in the printed manual, but not in the Info �le.Because of this, it is possible to use several slightly obscure TEX typesetting commandsthat cannot be used in an Info �le. In addition, this part of the beginning of a Texinfo �lecontains the text of the copying permissions that appears in the printed manual.

Chapter 3: Beginning a Texinfo File 35

You may wish to include titlepage-like information for plain text output. Simply placeany such leading material between @ifplaintext and @end ifplaintext; makeinfo in-cludes this when writing plain text (`--no-headers'), along with an @insertcopying.
3.4.1 @titlepage

Start the material for the title page and following copyright page with @titlepage ona line by itself and end it with @end titlepage on a line by itself.
The @end titlepage command starts a new page and turns on page numbering. (SeeAppendix E [Page Headings], page 206, for details about how to generate page headings.)All the material that you want to appear on unnumbered pages should be put betweenthe @titlepage and @end titlepage commands. You can force the table of contents toappear there with the @setcontentsaftertitlepage command (see Section 4.2 [Contents],page 46).
By using the @page command you can force a page break within the region delineatedby the @titlepage and @end titlepage commands and thereby create more than oneunnumbered page. This is how the copyright page is produced. (The @titlepage commandmight perhaps have been better named the @titleandadditionalpages command, but thatwould have been rather long!)
When you write a manual about a computer program, you should write the version ofthe program to which the manual applies on the title page. If the manual changes morefrequently than the program or is independent of it, you should also include an editionnumber1 for the manual. This helps readers keep track of which manual is for which versionof the program. (The `Top' node should also contain this information; see Section 3.5 [TheTop Node], page 39.)
Texinfo provides two main methods for creating a title page. One method uses the@titlefont, @sp, and @center commands to generate a title page in which the words onthe page are centered.
The second method uses the @title, @subtitle, and @author commands to create atitle page with black rules under the title and author lines and the subtitle text set
ushto the right hand side of the page. With this method, you do not specify any of the actualformatting of the title page. You specify the text you want, and Texinfo does the formatting.
You may use either method, or you may combine them; see the examples in the sectionsbelow.
For extremely simple applications, and for the bastard title page in traditional bookfront matter, Texinfo also provides a command @shorttitlepage which takes the rest ofthe line as the title. The argument is typeset on a page by itself and followed by a blankpage.

1 We have found that it is helpful to refer to versions of independent manuals as `editions' and versions
of programs as `versions'; otherwise, we �nd we are liable to confuse each other in conversation by
referring to both the documentation and the software with the same words.

Chapter 3: Beginning a Texinfo File 36

3.4.2 @titlefont , @center, and @sp

You can use the @titlefont, @sp, and @center commands to create a title page for aprinted document. (This is the �rst of the two methods for creating a title page in Texinfo.)Use the @titlefont command to select a large font suitable for the title itself. Youcan use @titlefont more than once if you have an especially long title.For example:
@titlefont{Texinfo}Use the @center command at the beginning of a line to center the remaining text onthat line. Thus,
@center @titlefont{Texinfo}centers the title, which in this example is \Texinfo" printed in the title font.Use the @sp command to insert vertical space. For example:
@sp 2This inserts two blank lines on the printed page. (See Section 14.6 [@sp], page 119, for moreinformation about the @sp command.)A template for this method looks like this:
@titlepage@sp 10@center @titlefont{name-of-manual-when-printed }@sp 2@center subtitle-if-any@sp 2@center author...@end titlepageThe spacing of the example �ts an 8.5 by 11 inch manual.

3.4.3 @title , @subtitle , and @author

You can use the @title, @subtitle, and @author commands to create a title pagein which the vertical and horizontal spacing is done for you automatically. This contrastswith the method described in the previous section, in which the @sp command is needed toadjust vertical spacing.Write the @title, @subtitle, or @author commands at the beginning of a line followedby the title, subtitle, or author.The @title command produces a line in which the title is set
ush to the left-handside of the page in a larger than normal font. The title is underlined with a black rule. Onlya single line is allowed; the @* command may not be used to break the title into two lines.To handle very long titles, you may �nd it pro�table to use both @title and @titlefont;see the �nal example in this section.The @subtitle command sets subtitles in a normal-sized font
ush to the right-handside of the page.

Chapter 3: Beginning a Texinfo File 37

The @author command sets the names of the author or authors in a middle-sized font
ush to the left-hand side of the page on a line near the bottom of the title page. Thenames are underlined with a black rule that is thinner than the rule that underlines thetitle. (The black rule only occurs if the @author command line is followed by an @pagecommand line.)
There are two ways to use the @author command: you can write the name or nameson the remaining part of the line that starts with an @author command:
@author by Jane Smith and John Doe

or you can write the names one above each other by using two (or more) @author commands:
@author Jane Smith@author John Doe(Only the bottom name is underlined with a black rule.)A template for this method looks like this:
@titlepage@title name-of-manual-when-printed@subtitle subtitle-if-any@subtitle second-subtitle@author author@page...@end titlepageYou may also combine the @titlefont method described in the previous section and@title method described in this one. This may be useful if you have a very long title. Hereis a real-life example:
@titlepage@titlefont{GNU Software}@sp 1@title for MS-Windows and MS-DOS@subtitle Edition @value{e} for Release @value{cde}@author by Daniel Hagerty, Melissa Weisshaus@author and Eli Zaretskii(The use of @value here is explained in Section 16.4.3 [value Example], page 138.

3.4.4 Copyright Page

By international treaty, the copyright notice for a book must be either on the titlepage or on the back of the title page. When the copyright notice is on the back of the titlepage, that page is customarily not numbered. Therefore, in Texinfo, the information on thecopyright page should be within @titlepage and @end titlepage commands.
Use the @page command to cause a page break. To push the copyright notice andthe other text on the copyright page towards the bottom of the page, use the followingincantantion after @page:
@vskip 0pt plus 1filll

Chapter 3: Beginning a Texinfo File 38

This is a TEX command that is not supported by the Info formatting commands. The@vskip command inserts whitespace. The `0pt plus 1filll' means to put in zero pointsof mandatory whitespace, and as much optional whitespace as needed to push the followingtext to the bottom of the page. Note the use of three `l's in the word `filll'; this is correct.
To insert the copyright text itself, write @insertcopying next (see Section 3.3 [Docu-ment Permissions], page 33):
@insertcopying

Follow the copying text by the publisher, ISBN numbers, cover art credits, and othersuch information.
Here is an example putting all this together:
@titlepage...@page@vskip 0pt plus 1filll@insertcopying
Published by ...
Cover art by ...@end titlepage

3.4.5 Heading Generation

The @end titlepage command must be written on a line by itself. It not only marksthe end of the title and copyright pages, but also causes TEX to start generating pageheadings and page numbers.
To repeat what is said elsewhere, Texinfo has two standard page heading formats, onefor documents which are printed on one side of each sheet of paper (single-sided printing),and the other for documents which are printed on both sides of each sheet (double-sidedprinting). You can specify these formats in di�erent ways:

� The conventional way is to write an @setchapternewpage command before the titlepage commands, and then have the @end titlepage command start generating pageheadings in the manner desired. (See Section 3.6.2 [setchapternewpage], page 42.)
� Alternatively, you can use the @headings command to prevent page headings frombeing generated or to start them for either single or double-sided printing. (Writean @headings command immediately after the @end titlepage command. See Sec-tion 3.4.6 [The @headings Command], page 39, for more information.)
� Or, you may specify your own page heading and footing format. See Appendix E [PageHeadings], page 206, for detailed information about page headings and footings.

Most documents are formatted with the standard single-sided or double-sided format,using @setchapternewpage odd for double-sided printing and no @setchapternewpagecommand for single-sided printing.

Chapter 3: Beginning a Texinfo File 39

3.4.6 The @headingsCommand

The @headings command is rarely used. It speci�es what kind of page headings andfootings to print on each page. Usually, this is controlled by the @setchapternewpagecommand. You need the @headings command only if the @setchapternewpage commanddoes not do what you want, or if you want to turn o� pre-de�ned page headings prior tode�ning your own. Write an @headings command immediately after the @end titlepagecommand.You can use @headings as follows:
@headings offTurn o� printing of page headings.
@headings singleTurn on page headings appropriate for single-sided printing.
@headings double@headings onTurn on page headings appropriate for double-sided printing. The two com-mands, @headings on and @headings double, are synonymous.
@headings singleafter@headings doubleafterTurn on single or double headings, respectively, after the current page isoutput.
@headings onTurn on page headings: single if `@setchapternewpage on', double otherwise.

For example, suppose you write @setchapternewpage off before the @titlepage com-mand to tell TEX to start a new chapter on the same page as the end of the last chapter.This command also causes TEX to typeset page headers for single-sided printing. To causeTEX to typeset for double sided printing, write @headings double after the @end titlepagecommand.You can stop TEX from generating any page headings at all by writing @headings offon a line of its own immediately after the line containing the @end titlepage command,like this:
@end titlepage@headings offThe @headings off command overrides the @end titlepage command, which would oth-erwise cause TEX to print page headings.You can also specify your own style of page heading and footing. See Appendix E [PageHeadings], page 206, for more information.

3.5 The `Top' Node and Master Menu
The `Top' node is the node in which a reader enters an Info manual. As such, itshould begin with the @insertcopying command (see Section 3.3 [Document Permissions],

Chapter 3: Beginning a Texinfo File 40

page 33) to provide a brief description of the manual (including the version number) andcopying permissions, and end with a master menu for the whole manual. Of course youshould include any other general information you feel a reader would �nd helpful.It is also conventional to write an @top sectioning command line containing the title ofthe document immediately after the @node Top line (see Section 6.3.6 [The @top SectioningCommand], page 59).The contents of the `Top' node should appear only in the online output; none of itshould appear in printed output, so enclose it between @ifnottex and @end ifnottexcommands. (TEX does not print either an @node line or a menu; they appear only inInfo; strictly speaking, you are not required to enclose these parts between @ifnottex and@end ifnottext, but it is simplest to do so. See Chapter 16 [Conditionally Visible Text],page 134.)
3.5.1 Top Node Example

Here is an example of a Top node.@ifnottex@node Top@top Sample Title
@insertcopying
Additional general information.
@menu* First Chapter::* Second Chapter::...* Index::@end menu

3.5.2 Parts of a Master Menu

A master menu is a detailed main menu listing all the nodes in a �le.A master menu is enclosed in @menu and @end menu commands and does not appear inthe printed document.Generally, a master menu is divided into parts.� The �rst part contains the major nodes in the Texinfo �le: the nodes for the chapters,chapter-like sections, and the appendices.� The second part contains nodes for the indices.� The third and subsequent parts contain a listing of the other, lower level nodes, oftenordered by chapter. This way, rather than go through an intermediary menu, aninquirer can go directly to a particular node when searching for speci�c information.These menu items are not required; add them if you think they are a convenience. Ifyou do use them, put @detailmenu before the �rst one, and @end detailmenu afterthe last; otherwise, makeinfo will get confused.

Chapter 3: Beginning a Texinfo File 41

Each section in the menu can be introduced by a descriptive line. So long as the linedoes not begin with an asterisk, it will not be treated as a menu entry. (See Section 7.1[Writing a Menu], page 61, for more information.)
For example, the master menu for this manual looks like the following (but has manymore entries):
@menu* Copying Conditions:: Your rights.* Overview:: Texinfo in brief....* Command and Variable Index::* Concept Index::
@detailmenu--- The Detailed Node Listing ---
Overview of Texinfo
* Reporting Bugs::
Beginning a Texinfo File
* Sample Beginning::@end detailmenu@end menu

3.6 Global Document Commands
Besides the basic commands mentioned in the previous sections, here are additionalcommands which a�ect the document as a whole. They are generally all given before theTop node, if they are given at all.

3.6.1 @documentdescription: Summary Text

When producing HTML output for a document, makeinfo writes a `<meta>' element inthe `<head>' to give some idea of the content of the document. By default, this descriptionis the title of the document, taken from the @settitle command (see Section 3.2.4 [settitle],page 32). To change this, use the @documentdescription environment, as in:
@documentdescriptiondescriptive text.@end documentdescription

This will produce the following output in the `<head>' of the HTML:
<meta name=description content="descriptive text.">

@documentdescription must be speci�ed before the �rst node of the document.

Chapter 3: Beginning a Texinfo File 42

3.6.2 @setchapternewpage:

In an o�cially bound book, text is usually printed on both sides of the paper, chaptersstart on right-hand pages, and right-hand pages have odd numbers. But in short reports,text often is printed only on one side of the paper. Also in short reports, chapters sometimesdo not start on new pages, but are printed on the same page as the end of the precedingchapter, after a small amount of vertical whitespace.You can use the @setchapternewpage command with various arguments to specifyhow TEX should start chapters and whether it should format headers for printing on one orboth sides of the paper (single-sided or double-sided printing).Write the @setchapternewpage command at the beginning of a line followed by itsargument.For example, you would write the following to cause each chapter to start on a freshodd-numbered page:
@setchapternewpage oddYou can specify one of three alternatives with the @setchapternewpage command:

@setchapternewpage offCause TEX to typeset a new chapter on the same page as the last chapter, afterskipping some vertical whitespace. Also, cause TEX to format page headers forsingle-sided printing.
@setchapternewpage onCause TEX to start new chapters on new pages and to format page headersfor single-sided printing. This is the form most often used for short reports orpersonal printing. This is the default.
@setchapternewpage oddCause TEX to start new chapters on new, odd-numbered pages (right-handedpages) and to typeset for double-sided printing. This is the form most oftenused for books and manuals.

Texinfo does not have an @setchapternewpage even command, because there is noprinting tradition of starting chapters or books on an even-numbered page.If you don't like the default headers that @setchapternewpage sets, you can explicitcontrol them with the @headings command. See Section 3.4.6 [The @headings Command],page 39.At the beginning of a manual or book, pages are not numbered|for example, the titleand copyright pages of a book are not numbered. By convention, table of contents andfrontmatter pages are numbered with roman numerals and not in sequence with the rest ofthe document.Since an Info �le does not have pages, the @setchapternewpage command has no e�ecton it.We recommend not including any @setchapternewpage command in your manualsources at all, since the desired output is not intrinsic to the document. For a particu-lar hard copy run, if you don't want the default option (no blank pages, same headers onall pages) use the `--texinfo' option to texi2dvi to specify the output you want.

Chapter 3: Beginning a Texinfo File 43

3.6.3 Paragraph Indenting

The Texinfo processors may insert whitespace at the beginning of the �rst line of eachparagraph, thereby indenting that paragraph. You can use the @paragraphindent com-mand to specify this indentation. Write an @paragraphindent command at the beginningof a line followed by either `asis' or a number:
@paragraphindent indentThe indentation is according to the value of indent:

asis Do not change the existing indentation (not implemented in TEX).
none0 Omit all indentation.
n Indent by n space characters in Info output, by n ems in TEX.

The default value of indent is 3. @paragraphindent is ignored for HTML output.It is best to write the @paragraphindent command before the end-of-header line atthe beginning of a Texinfo �le, so the region formatting commands indent paragraphs asspeci�ed. See Section 3.2.2 [Start of Header], page 31.A peculiarity of the texinfo-format-buffer and texinfo-format-region commandsis that they do not indent (nor �ll) paragraphs that contain @w or @* commands. SeeAppendix G [Re�lling Paragraphs], page 218, for further information.
3.6.4 @exampleindent: Environment Indenting

The Texinfo processors indent each line of @example and similar environments. You canuse the @exampleindent command to specify this indentation. Write an @exampleindentcommand at the beginning of a line followed by either `asis' or a number:
@exampleindent indentThe indentation is according to the value of indent:

asis Do not change the existing indentation (not implemented in TEX).
0 Omit all indentation.
n Indent environments by n space characters in Info output, by n ems in TEX.

The default value of indent is 5. @exampleindent is ignored for HTML output.It is best to write the @exampleindent command before the end-of-header line atthe beginning of a Texinfo �le, so the region formatting commands indent paragraphs asspeci�ed. See Section 3.2.2 [Start of Header], page 31.
3.7 Software Copying Permissions

If the Texinfo �le has a section containing the \General Public License" and the dis-tribution information and a warranty disclaimer for the software that is documented, werecommend placing this right after the `Top' node. The General Public License is very

Chapter 3: Beginning a Texinfo File 44

important to Project GNU software. It ensures that you and others will continue to have aright to use and share the software.The copying and distribution information and the disclaimer are followed by an intro-duction or else by the �rst chapter of the manual.Although an introduction is not a required part of a Texinfo �le, it is very helpful.Ideally, it should state clearly and concisely what the �le is about and who would be inter-ested in reading it. In general, an introduction would follow the licensing and distributioninformation, although sometimes people put it earlier in the document.

Chapter 4: Ending a Texinfo File 45

4 Ending a Texinfo File

The end of a Texinfo �le should include commands to create indices and (perhaps) togenerate both the full and summary tables of contents. Finally, it must include the @byecommand that marks the last line to be processed.For example:
@node Index@unnumbered Index
@printindex cp
@shortcontents@contents
@bye

4.1 Printing Indices and Menus
To print an index means to include it as part of a manual or Info �le. This doesnot happen automatically just because you use @cindex or other index-entry generatingcommands in the Texinfo �le; those just cause the raw data for the index to be accumulated.To generate an index, you must include the @printindex command at the place in thedocument where you want the index to appear. Also, as part of the process of creatinga printed manual, you must run a program called texindex (see Chapter 19 [Hardcopy],page 147) to sort the raw data to produce a sorted index �le. The sorted index �le is whatis actually used to print the index.Texinfo o�ers six separate types of prede�ned index, each with a two-letter abbrevia-tion, as illustrated in the following table. However, you may merge indices (see Section 12.4[Combining Indices], page 102) or de�ne your own indices (see Section 12.5 [New Indices],page 103).Here are the prede�ned indices, their abbreviations, and the corresponding index entrycommands:

`cp' concept index (@cindex)
`fn' function index (@findex)
`vr' variable index (@index)
`ky' key index (@kindex)
`pg' program index (@pindex)
`tp' data type index (@tindex)

The @printindex command takes a two-letter index abbreviation, reads the corre-sponding sorted index �le and formats it appropriately into an index.The @printindex command does not generate a chapter heading for the index. Conse-quently, you should precede the @printindex command with a suitable section or chapter

Chapter 4: Ending a Texinfo File 46

command (usually @appendix or @unnumbered) to supply the chapter heading and put theindex into the table of contents. Precede the @unnumbered command with an @node line.For example:
@node Variable Index
@unnumbered Variable Index

@printindex vr

@node Concept Index
@unnumbered Concept Index

@printindex cp

We recommend placing the concept index last, since that makes it easiest to �nd. Wealso recommend having a single index whenever possible, since then readers have only oneplace to look (see Section 12.4 [Combining Indices], page 102).
4.2 Generating a Table of Contents

The @chapter, @section, and other structuring commands supply the information tomake up a table of contents, but they do not cause an actual table to appear in the manual.To do this, you must use the @contents and/or @summarycontents command(s).
@contents Generate a table of contents in a printed manual, including all chapters, sec-tions, subsections, etc., as well as appendices and unnumbered chapters. Head-ings generated by the @heading series of commands do not appear in the tableof contents.
@shortcontents@summarycontents(@summarycontents is a synonym for @shortcontents.)Generate a short or summary table of contents that lists only the chapters, ap-pendices, and unnumbered chapters. Sections, subsections and subsubsectionsare omitted. Only a long manual needs a short table of contents in addition tothe full table of contents.

Both contents commands should be written on a line by themselves. The contentscommands automatically generate a chapter-like heading at the top of the �rst table ofcontents page, so don't include any sectioning command such as @unnumbered before them.Since an Info �le uses menus instead of tables of contents, the Info formatting com-mands ignore the contents commands. But the contents are included in plain text output(generated by makeinfo --no-headers), unless makeinfo is writing its output to standardoutput.When makeinfo writes a short table of contents while producing html output, the linksin the short table of contents point to corresponding entries in the full table of contentsrather than the text of the document. The links in the full table of contents point to themain text of the document.The contents commands can be placed either at the very end of the �le, after anyindices (see the previous section) and just before the @bye (see the next section), or near

Chapter 4: Ending a Texinfo File 47

the beginning of the �le, after the @end titlepage (see Section 3.4.1 [titlepage], page 35).The advantage to the former is that then the contents output is always up to date, becauseit re
ects the processing just done. The advantage to the latter is that the contents areprinted in the proper place, thus you do not need to rearrange the DVI �le with dviselector shu�e paper.As an author, you can put the contents commands wherever you prefer. But if youare a user simply printing a manual, you may wish to print the contents after the titlepage even if the author put the contents commands at the end of the document (as isthe case in most existing Texinfo documents, at this writing). You can do this by spec-ifying @setcontentsaftertitlepage and/or @setshortcontentsaftertitlepage. The�rst prints only the main contents after the @end titlepage; the second prints boththe short contents and the main contents. In either case, any subsequent @contents or@shortcontents is ignored (unless no @end titlepage is ever encountered).You need to include the @set...contentsaftertitlepage commands early in thedocument (just after @setfilename, for example). We recommend using texi2dvi (seeSection 19.3 [Format with texi2dvi], page 149) to specify this without altering the source�le at all. For example:
texi2dvi --texinfo=@setcontentsaftertitlepage foo.texi

4.3 @byeFile Ending
An @bye command terminates Texinfo processing. None of the formatters read anythingfollowing @bye. The @bye command should be on a line by itself.If you wish, you may follow the @bye line with notes. These notes will not be formattedand will not appear in either Info or a printed manual; it is as if text after @bye were within@ignore . . . @end ignore. Also, you may follow the @bye line with a local variables list forEmacs. See Section 19.7 [Using Local Variables and the Compile Command], page 152, formore information.

Chapter 5: Chapter Structuring 48

5 Chapter Structuring

The chapter structuring commands divide a document into a hierarchy of chapters,sections, subsections, and subsubsections. These commands generate large headings; theyalso provide information for the table of contents of a printed manual (see Section 4.2[Generating a Table of Contents], page 46).
The chapter structuring commands do not create an Info node structure, so normallyyou should put an @node command immediately before each chapter structuring command(see Chapter 6 [Nodes], page 54). The only time you are likely to use the chapter structuringcommands without using the node structuring commands is if you are writing a documentthat contains no cross references and will never be transformed into Info format.
It is unlikely that you will ever write a Texinfo �le that is intended only as an Info�le and not as a printable document. If you do, you might still use chapter structuringcommands to create a heading at the top of each node|but you don't need to.

5.1 Tree Structure of Sections
A Texinfo �le is usually structured like a book with chapters, sections, subsections,and the like. This structure can be visualized as a tree (or rather as an upside-down tree)with the root at the top and the levels corresponding to chapters, sections, subsection, andsubsubsections.
Here is a diagram that shows a Texinfo �le with three chapters, each of which has twosections.

Top|-------------------------------------| | |Chapter 1 Chapter 2 Chapter 3| | |-------- -------- --------| | | | | |Section Section Section Section Section Section1.1 1.2 2.1 2.2 3.1 3.2
In a Texinfo �le that has this structure, the beginning of Chapter 2 looks like this:
@node Chapter 2, Chapter 3, Chapter 1, top@chapter Chapter 2

The chapter structuring commands are described in the sections that follow; the @nodeand @menu commands are described in following chapters. (See Chapter 6 [Nodes], page 54,and see Chapter 7 [Menus], page 61.)

Chapter 5: Chapter Structuring 49

5.2 Structuring Command Types
The chapter structuring commands fall into four groups or series, each of which con-tains structuring commands corresponding to the hierarchical levels of chapters, sections,subsections, and subsubsections.
The four groups are the @chapter series, the @unnumbered series, the @appendix series,and the @heading series.
Each command produces titles that have a di�erent appearance on the printed page orInfo �le; only some of the commands produce titles that are listed in the table of contentsof a printed book or manual.

� The @chapter and @appendix series of commands produce numbered or lettered entriesboth in the body of a printed work and in its table of contents.
� The @unnumbered series of commands produce unnumbered entries both in the bodyof a printed work and in its table of contents. The @top command, which has a specialuse, is a member of this series (see Section 5.3 [@top], page 49).
� The @heading series of commands produce unnumbered headings that do not appearin a table of contents. The heading commands never start a new page.
� The @majorheading command produces results similar to using the @chapheadingcommand but generates a larger vertical whitespace before the heading.
� When an @setchapternewpage command says to do so, the @chapter, @unnumbered,and @appendix commands start new pages in the printed manual; the @heading com-mands do not.

Here are the four groups of chapter structuring commands: No new page
Numbered Unnumbered Lettered/numbered UnnumberedIn contents In contents In contents Omitted fromcontents

@top @majorheading
@chapter @unnumbered @appendix @chapheading
@section @unnumberedsec @appendixsec @heading
@subsection @unnumberedsubsec @appendixsubsec @subheading
@subsubsection @unnumberedsubsubsec @appendixsubsubsec @subsubheading

5.3 @top

The @top command is a special sectioning command that you use only after an `@nodeTop' line at the beginning of a Texinfo �le. The @top command tells the makeinfo formatterwhich node is the `Top' node, so it can use it as the root of the node tree if your manualuses implicit pointers. It has the same typesetting e�ect as @unnumbered (see Section 5.5[@unnumbered and @appendix], page 50). For detailed information, see Section 6.3.6 [The@top Command], page 59.
The @top node and its menu (if any) is conventionally wrapped in an @ifnottexconditional so that it will appear only in Info and HTML output, not TEX.

Chapter 5: Chapter Structuring 50

5.4 @chapter

@chapter identi�es a chapter in the document. Write the command at the beginningof a line and follow it on the same line by the title of the chapter.For example, this chapter in this manual is entitled \Chapter Structuring"; the@chapter line looks like this:
@chapter Chapter StructuringIn TEX, the @chapter command creates a chapter in the document, specifying thechapter title. The chapter is numbered automatically.In Info, the @chapter command causes the title to appear on a line by itself, with a lineof asterisks inserted underneath. Thus, in Info, the above example produces the followingoutput:
Chapter Structuring*******************Texinfo also provides a command @centerchap, which is analogous to @unnumbered,but centers its argument in the printed output. This kind of stylistic choice is not usuallyo�ered by Texinfo.

5.5 @unnumberedand @appendix

Use the @unnumbered command to create a chapter that appears in a printed manualwithout chapter numbers of any kind. Use the @appendix command to create an appendixin a printed manual that is labelled by letter instead of by number.For Info �le output, the @unnumbered and @appendix commands are equivalent to@chapter: the title is printed on a line by itself with a line of asterisks underneath. (SeeSection 5.4 [@chapter], page 50.)To create an appendix or an unnumbered chapter, write an @appendix or @unnumberedcommand at the beginning of a line and follow it on the same line by the title, as you wouldif you were creating a chapter.
5.6 @majorheading, @chapheading

The @majorheading and @chapheading commands put chapter-like headings in thebody of a document.However, neither command causes TEX to produce a numbered heading or an entry inthe table of contents; and neither command causes TEX to start a new page in a printedmanual.In TEX, an @majorheading command generates a larger vertical whitespace before theheading than an @chapheading command but is otherwise the same.In Info, the @majorheading and @chapheading commands are equivalent to @chapter:the title is printed on a line by itself with a line of asterisks underneath. (See Section 5.4[@chapter], page 50.)

Chapter 5: Chapter Structuring 51

5.7 @section

In a printed manual, an @section command identi�es a numbered section within achapter. The section title appears in the table of contents. In Info, an @section commandprovides a title for a segment of text, underlined with `='.
This section is headed with an @section command and looks like this in the Texinfo�le:
@section @code{@@section}

To create a section, write the @section command at the beginning of a line and followit on the same line by the section title.
Thus,
@section This is a section

produces
This is a section=================in Info.

5.8 @unnumberedsec, @appendixsec, @heading

The @unnumberedsec, @appendixsec, and @heading commands are, respectively, theunnumbered, appendix-like, and heading-like equivalents of the @section command. (SeeSection 5.7 [@section], page 51.)
@unnumberedsecThe @unnumberedsec command may be used within an unnumbered chapter orwithin a regular chapter or appendix to provide an unnumbered section.
@appendixsec@appendixsection@appendixsection is a longer spelling of the @appendixsec command; the twoare synonymous.Conventionally, the @appendixsec or @appendixsection command is used onlywithin appendices.
@heading You may use the @heading command anywhere you wish for a section-styleheading that will not appear in the table of contents.
5.9 The @subsection Command

Subsections are to sections as sections are to chapters. (See Section 5.7 [@section],page 51.) In Info, subsection titles are underlined with `-'. For example,
@subsection This is a subsection

produces

Chapter 5: Chapter Structuring 52

This is a subsection--------------------In a printed manual, subsections are listed in the table of contents and are numberedthree levels deep.
5.10 The @subsection-like Commands

The @unnumberedsubsec, @appendixsubsec, and @subheading commands are, respec-tively, the unnumbered, appendix-like, and heading-like equivalents of the @subsectioncommand. (See Section 5.9 [@subsection], page 51.)In Info, the @subsection-like commands generate a title underlined with hyphens. Ina printed manual, an @subheading command produces a heading like that of a subsectionexcept that it is not numbered and does not appear in the table of contents. Similarly, an@unnumberedsubsec command produces an unnumbered heading like that of a subsectionand an @appendixsubsec command produces a subsection-like heading labelled with aletter and numbers; both of these commands produce headings that appear in the table ofcontents.
5.11 The `subsub' Commands

The fourth and lowest level sectioning commands in Texinfo are the `subsub' commands.They are:
@subsubsectionSubsubsections are to subsections as subsections are to sections. (See Section 5.9[@subsection], page 51.) In a printed manual, subsubsection titles appear inthe table of contents and are numbered four levels deep.
@unnumberedsubsubsecUnnumbered subsubsection titles appear in the table of contents of a printedmanual, but lack numbers. Otherwise, unnumbered subsubsections are thesame as subsubsections. In Info, unnumbered subsubsections look exactly likeordinary subsubsections.
@appendixsubsubsecConventionally, appendix commands are used only for appendices and are let-tered and numbered appropriately in a printed manual. They also appear in thetable of contents. In Info, appendix subsubsections look exactly like ordinarysubsubsections.
@subsubheadingThe @subsubheading command may be used anywhere that you need a smallheading that will not appear in the table of contents. In Info, subsubheadingslook exactly like ordinary subsubsection headings.

In Info, `subsub' titles are underlined with periods. For example,
@subsubsection This is a subsubsectionproduces

Chapter 5: Chapter Structuring 53

This is a subsubsection.......................
5.12 @raisesections and @lowersections

The @raisesections and @lowersections commands raise and lower the hierarchicallevel of chapters, sections, subsections and the like. The @raisesections command changessections to chapters, subsections to sections, and so on. The @lowersections commandchanges chapters to sections, sections to subsections, and so on.An @lowersections command is useful if you wish to include text that is written asan outer or standalone Texinfo �le in another Texinfo �le as an inner, included �le. If youwrite the command at the beginning of the �le, all your @chapter commands are formattedas if they were @section commands, all your @section command are formatted as if theywere @subsection commands, and so on.@raisesections raises a command one level in the chapter structuring hierarchy:Change To
@subsection @section,@section @chapter,@heading @chapheading,etc.

@lowersections lowers a command one level in the chapter structuring hierarchy:Change To
@chapter @section,@subsection @subsubsection,@heading @subheading,etc.An @raisesections or @lowersections command changes only those structuringcommands that follow the command in the Texinfo �le. Write an @raisesections or@lowersections command on a line of its own.An @lowersections command cancels an @raisesections command, and vice versa.Typically, the commands are used like this:
@lowersections@include somefile.texi@raisesectionsWithout the @raisesections, all the subsequent sections in your document will belowered.Repeated use of the commands continue to raise or lower the hierarchical level a stepat a time.An attempt to raise above `chapters' reproduces chapter commands; an attempt tolower below `subsubsections' reproduces subsubsection commands.

Chapter 6: Nodes 54

6 Nodes

Nodes are the primary segments of a Texinfo �le. They do not themselves imposea hierarchical or any other kind of structure on a �le. Nodes contain node pointers thatname other nodes, and can contain menus which are lists of nodes. In Info, the movementcommands can carry you to a pointed-to node or to a node listed in a menu. Node pointersand menus provide structure for Info �les just as chapters, sections, subsections, and thelike, provide structure for printed books.

6.1 Two Paths
The node and menu commands and the chapter structuring commands are technicallyindependent of each other:

� In Info, node and menu commands provide structure. The chapter structuring com-mands generate headings with di�erent kinds of underlining|asterisks for chapters,hyphens for sections, and so on; they do nothing else.
� In TEX, the chapter structuring commands generate chapter and section numbers andtables of contents. The node and menu commands provide information for cross refer-ences; they do nothing else.

You can use node pointers and menus to structure an Info �le any way you want; andyou can write a Texinfo �le so that its Info output has a di�erent structure than its printedoutput. However, virtually all Texinfo �les are written such that the structure for the Infooutput corresponds to the structure for the printed output. It is neither convenient norunderstandable to the reader to do otherwise.
Generally, printed output is structured in a tree-like hierarchy in which the chaptersare the major limbs from which the sections branch out. Similarly, node pointers and menusare organized to create a matching structure in the Info output.

6.2 Node and Menu Illustration
Here is a copy of the diagram shown earlier that illustrates a Texinfo �le with threechapters, each of which contains two sections.
The \root" is at the top of the diagram and the \leaves" are at the bottom. This ishow such a diagram is drawn conventionally; it illustrates an upside-down tree. For thisreason, the root node is called the `Top' node, and `Up' node pointers carry you closer tothe root.

Chapter 6: Nodes 55

Top|-------------------------------------| | |Chapter 1 Chapter 2 Chapter 3| | |-------- -------- --------| | | | | |Section Section Section Section Section Section1.1 1.2 2.1 2.2 3.1 3.2The fully-written command to start Chapter 2 would be this:
@node Chapter 2, Chapter 3, Chapter 1, Top@comment node-name, next, previous, upThis @node line says that the name of this node is \Chapter 2", the name of the `Next'node is \Chapter 3", the name of the `Previous' node is \Chapter 1", and the name ofthe `Up' node is \Top". You can omit writing out these node names if your documentis hierarchically organized (see Section 6.4 [makeinfo Pointer Creation], page 60), but thepointer relationships still obtain.
Please Note: `Next' refers to the next node at the same hierarchical level in themanual, not necessarily to the next node within the Texinfo �le. In the Texinfo�le, the subsequent node may be at a lower level|a section-level node mostoften follows a chapter-level node, for example. `Next' and `Previous' refer tonodes at the same hierarchical level. (The `Top' node contains the exceptionto this rule. Since the `Top' node is the only node at that level, `Next' refersto the �rst following node, which is almost always a chapter or chapter-levelnode.)To go to Sections 2.1 and 2.2 using Info, you need a menu inside Chapter 2. (SeeChapter 7 [Menus], page 61.) You would write the menu just before the beginning ofSection 2.1, like this:

@menu* Sect. 2.1:: Description of this section.* Sect. 2.2::@end menuWrite the node for Sect. 2.1 like this:
@node Sect. 2.1, Sect. 2.2, Chapter 2, Chapter 2@comment node-name, next, previous, upIn Info format, the `Next' and `Previous' pointers of a node usually lead to other nodesat the same level|from chapter to chapter or from section to section (sometimes, as shown,the `Previous' pointer points up); an `Up' pointer usually leads to a node at the level above(closer to the `Top' node); and a `Menu' leads to nodes at a level below (closer to `leaves').(A cross reference can point to a node at any level; see Chapter 8 [Cross References],page 65.)Usually, an @node command and a chapter structuring command are used in sequence,along with indexing commands. (You may follow the @node line with a comment line thatreminds you which pointer is which.)

Chapter 6: Nodes 56

Here is the beginning of the chapter in this manual called \Ending a Texinfo File". Thisshows an @node line followed by a comment line, an @chapter line, and then by indexinglines.
@node Ending a File, Structuring, Beginning a File, Top@comment node-name, next, previous, up@chapter Ending a Texinfo File@cindex Ending a Texinfo file@cindex Texinfo file ending@cindex File ending

6.3 The @nodeCommand
A node is a segment of text that begins at an @node command and continues untilthe next @node command. The de�nition of node is di�erent from that for chapter orsection. A chapter may contain sections and a section may contain subsections; but a nodecannot contain subnodes; the text of a node continues only until the next @node commandin the �le. A node usually contains only one chapter structuring command, the one thatfollows the @node line. On the other hand, in printed output nodes are used only for crossreferences, so a chapter or section may contain any number of nodes. Indeed, a chapterusually contains several nodes, one for each section, subsection, and subsubsection.
To create a node, write an @node command at the beginning of a line, and follow itwith up to four arguments, separated by commas, on the rest of the same line. The �rstargument is required; it is the name of this node. The subsequent arguments are the namesof the `Next', `Previous', and `Up' pointers, in that order, and may be omitted if yourTexinfo document is hierarchically organized (see Section 6.4 [makeinfo Pointer Creation],page 60).
You may insert spaces before each name if you wish; the spaces are ignored. You mustwrite the name of the node and (if present) the names of the `Next', `Previous', and `Up'pointers all on the same line. Otherwise, the formatters fail. (See Info �le `info', node`Top', for more information about nodes in Info.)
Usually, you write one of the chapter-structuring command lines immediately after an@node line|for example, an @section or @subsection line. (See Section 5.2 [StructuringCommand Types], page 49.)

Please note: The GNU Emacs Texinfo mode updating commands work onlywith Texinfo �les in which @node lines are followed by chapter structuring lines.See Section 2.4.1 [Updating Requirements], page 22.
TEX uses @node lines to identify the names to use for cross references. For this reason,you must write @node lines in a Texinfo �le that you intend to format for printing, even ifyou do not intend to format it for Info. (Cross references, such as the one at the end of thissentence, are made with @xref and related commands; see Chapter 8 [Cross References],page 65.)

Chapter 6: Nodes 57

6.3.1 Choosing Node and Pointer Names

The name of a node identi�es the node. The pointers enable you to reach other nodesand consist simply of the names of those nodes.Normally, a node's `Up' pointer contains the name of the node whose menu mentionsthat node. The node's `Next' pointer contains the name of the node that follows that nodein that menu and its `Previous' pointer contains the name of the node that precedes it inthat menu. When a node's `Previous' node is the same as its `Up' node, both node pointersname the same node.Usually, the �rst node of a Texinfo �le is the `Top' node, and its `Up' and `Previous'pointers point to the `dir' �le, which contains the main menu for all of Info.The `Top' node itself contains the main or master menu for the manual. Also, it ishelpful to include a brief description of the manual in the `Top' node. See Section 6.3.5[First Node], page 58, for information on how to write the �rst node of a Texinfo �le.Even when you explicitly specify all pointers, that does not mean you can write thenodes in the Texinfo source �le in an arbitrary order! Because TEX processes the �lesequentially, irrespective of node pointers, you must write the nodes in the order you wishthem to appear in the printed output.
6.3.2 How to Write an @nodeLine

The easiest way to write an @node line is to write @node at the beginning of a line andthen the name of the node, like this:
@node node-nameIf you are using GNU Emacs, you can use the update node commands provided byTexinfo mode to insert the names of the pointers; or you can leave the pointers out of theTexinfo �le and let makeinfo insert node pointers into the Info �le it creates. (See Chapter 2[Texinfo Mode], page 16, and Section 6.4 [makeinfo Pointer Creation], page 60.)Alternatively, you can insert the `Next', `Previous', and `Up' pointers yourself. If youdo this, you may �nd it helpful to use the Texinfo mode keyboard command C-c C-c n.This command inserts `@node' and a comment line listing the names of the pointers in theirproper order. The comment line helps you keep track of which arguments are for whichpointers. This comment line is especially useful if you are not familiar with Texinfo.The template for a fully-written-out node line with `Next', `Previous', and `Up' pointerslooks like this:
@node node-name, next , previous , upIf you wish, you can ignore @node lines altogether in your �rst draft and then use thetexinfo-insert-node-lines command to create @node lines for you. However, we do notrecommend this practice. It is better to name the node itself at the same time that youwrite a segment so you can easily make cross references. A large number of cross referencesare an especially important feature of a good Info �le.After you have inserted an @node line, you should immediately write an @-commandfor the chapter or section and insert its name. Next (and this is important!), put in severalindex entries. Usually, you will �nd at least two and often as many as four or �ve ways of

Chapter 6: Nodes 58

referring to the node in the index. Use them all. This will make it much easier for peopleto �nd the node.
6.3.3 @nodeLine Tips

Here are three suggestions:
� Try to pick node names that are informative but short.In the Info �le, the �le name, node name, and pointer names are all inserted on oneline, which may run into the right edge of the window. (This does not cause a problemwith Info, but is ugly.)
� Try to pick node names that di�er from each other near the beginnings of their names.This way, it is easy to use automatic name completion in Info.
� By convention, node names are capitalized just as they would be for section or chaptertitles|initial and signi�cant words are capitalized; others are not.

6.3.4 @nodeLine Requirements

Here are several requirements for @node lines:
� All the node names for a single Info �le must be unique.Duplicates confuse the Info movement commands. This means, for example, that ifyou end every chapter with a summary, you must name each summary node di�erently.You cannot just call each one \Summary". You may, however, duplicate the titles ofchapters, sections, and the like. Thus you can end each chapter in a book with a sectioncalled \Summary", so long as the node names for those sections are all di�erent.
� A pointer name must be the name of a node.The node to which a pointer points may come before or after the node containing thepointer.
� @-commands in node names are not allowed. This includes punctuation characters thatare escaped with a `@', such as @ and {. (For a few rare cases when this is useful,Texinfo has limited support for using @-commands in node names; see Section 20.1.4[Pointer Validation], page 162.)
� Unfortunately, you cannot use periods, commas, colons or parentheses within a nodename; these confuse the Texinfo processors.For example, the following is a section title in this manual:

@code{@@unnumberedsec}, @code{@@appendixsec}, @code{@@heading}But the corresponding node name lacks the commas and the @'s:
unnumberedsec appendixsec heading

� Case is signi�cant.
6.3.5 The First Node

The �rst node of a Texinfo �le is the Top node, except in an included �le (see Appen-dix D [Include Files], page 202). The Top node should contain a short summary, copying

Chapter 6: Nodes 59

permissions, and a master menu. See Section 3.5 [The Top Node], page 39, for more infor-mation on the Top node contents and examples.
Here is a description of the node pointers to be used in the Top node:

� The Top node (which must be named `top' or `Top') should have as its `Up' node thename of a node in another �le, where there is a menu that leads to this �le. Specifythe �le name in parentheses.
Usually, all Info �les are installed in the same Info directory tree; in this case, use`(dir)' as the parent of the Top node; this is short for `(dir)top', and speci�es theTop node in the `dir' �le, which contains the main menu for the Info system as a whole.

� On the other hand, do not de�ne the `Previous' node of the Top node to be `(dir)', asit causes confusing behavior for users: if you are in the Top node and hits hDELi to gobackwards, you wind up in the middle of the some other entry in the `dir' �le, whichhas nothing to do with what you were reading.
� The `Next' node of the Top node should be the �rst chapter in your document.

See Section 20.2 [Installing an Info File], page 167, for more information about installingan Info �le in the `info' directory.
For concreteness, here is an example with explicit pointers (which you can maintainautomatically with the texinfo mode commands):
Or you can leave the pointers o� entirely and let the tools implicitly de�ne them. Thisis recommended. Thus:
@node Top

6.3.6 The @topSectioning Command

A special sectioning command, @top should be used with the @node Top line. The @topsectioning command tells makeinfo that it marks the `Top' node in the �le. It providesthe information that makeinfo needs to insert node pointers automatically. Write the @topcommand at the beginning of the line immediately following the @node Top line. Write thetitle on the remaining part of the same line as the @top command.
In Info, the @top sectioning command causes the title to appear on a line by itself,with a line of asterisks inserted underneath, as other sectioning commands do.
In TEX and texinfo-format-buffer, the @top sectioning command is merely a syn-onym for @unnumbered. Neither of these formatters require an @top command, and donothing special with it. You can use @chapter or @unnumbered after the @node Top linewhen you use these formatters. Also, you can use @chapter or @unnumbered when you usethe Texinfo updating commands to create or update pointers and menus.
Thus, in practice, a Top node starts like this:
@node Top@top Your Manual Title

Chapter 6: Nodes 60

6.4 Creating Pointers with makeinfo

The makeinfo program has a feature for automatically de�ning node pointers for ahierarchically organized �le.When you take advantage of this feature, you do not need to write the `Next', `Previous',and `Up' pointers after the name of a node. However, you must write a sectioning command,such as @chapter or @section, on the line immediately following each truncated @node line(except that comment lines may intervene).In addition, you must follow the `Top' @node line with a line beginning with @top tomark the `Top' node in the �le. See Section 5.3 [@top], page 49.Finally, you must write the name of each node (except for the `Top' node) in a menuthat is one or more hierarchical levels above the node's hierarchical level.This node pointer insertion feature in makeinfo relieves you from the need to updatemenus and pointers manually or with Texinfo mode commands. (See Section 2.4 [UpdatingNodes and Menus], page 19.)In most cases, you will want to take advantage of this feature and not redundantlyspecify node pointers. However, Texinfo documents are not required to be organized hier-archically or in fact contain sectioning commands at all. For example, if you never intendthe document to be printed. In those cases, you will need to explicitly specify the pointers.
6.5 @anchor: De�ning Arbitrary Cross-reference Targets

An anchor is a position in your document, labeled so that cross-references can refer toit, just as they can to nodes. You create an anchor with the @anchor command, and givethe label as a normal brace-delimited argument. For example:This marks the @anchor{x-spot}spot....@xref{x-spot,,the spot}.produces:This marks the spot....See [the spot], page 1.As you can see, the @anchor command itself produces no output. This example de�nesan anchor `x-spot' just before the word `spot'. You can refer to it later with an @xref orother cross-reference command, as shown. See Chapter 8 [Cross References], page 65, fordetails on the cross-reference commands.It is best to put @anchor commands just before the position you wish to refer to; thatway, the reader's eye is led on to the correct text when they jump to the anchor. You canput the @anchor command on a line by itself if that helps readability of the source. Spacesare always ignored after @anchor.Anchor names and node names may not con
ict. Anchors and nodes are given similartreatment in some ways; for example, the goto-node command in standalone Info takeseither an anchor name or a node name as an argument. (See section \goto-node" in GNU
Info .)

Chapter 7: Menus 61

7 Menus

Menus contain pointers to subordinate nodes.1 In Info, you use menus to go to suchnodes. Menus have no e�ect in printed manuals and do not appear in them.
By convention, a menu is put at the end of a node since a reader who uses the menu maynot see text that follows it. Furthermore, a node that has a menu should not contain muchtext. If you have a lot of text and a menu, move most of the text into a new subnode|allbut a few lines. Otherwise, a reader with a terminal that displays only a few lines may missthe menu and its associated text. As a practical matter, you should locate a menu within20 lines of the beginning of the node.
The short text before a menu may look awkward in a printed manual. To avoid this,you can write a menu near the beginning of its node and follow the menu by an @node line,and then an @heading line located within @ifinfo and @end ifinfo. This way, the menu,@node line, and title appear only in the Info �le, not the printed document.
For example, the preceding two paragraphs follow an Info-only menu, @node line, andheading, and look like this:
@menu* Menu Location:: Put a menu in a short node.* Writing a Menu:: What is a menu?* Menu Parts:: A menu entry has three parts.* Less Cluttered Menu Entry:: Two part menu entry.* Menu Example:: Two and three part entries.* Other Info Files:: How to refer to a differentInfo file.@end menu
@node Menu Location, Writing a Menu, , Menus@ifinfo@heading Menus Need Short Nodes@end ifinfo

The Texinfo �le for this document contains a number of examples of this procedure;one is at the beginning of this chapter.
7.1 Writing a Menu

A menu consists of an @menu command on a line by itself followed by menu entry linesor menu comment lines and then by an @end menu command on a line by itself.
A menu looks like this:

1 Menus can carry you to any node, regardless of the hierarchical structure; even to nodes in a di�erent
Info �le. However, the GNU Emacs Texinfo mode updating commands work only to create menus of
subordinate nodes. Conventionally, cross references are used to refer to other nodes.

Chapter 7: Menus 62

@menuLarger Units of Text
* Files:: All about handling files.* Multiples: Buffers. Multiple buffers; editingseveral files at once.@end menuIn a menu, every line that begins with an `* ' is a menu entry. (Note the space afterthe asterisk.) A line that does not start with an `* ' may also appear in a menu. Sucha line is not a menu entry but is a menu comment line that appears in the Info �le. Inthe example above, the line `Larger Units of Text' is a menu comment line; the two linesstarting with `* ' are menu entries. Space characters in a menu are preserved as-is; thisallows you to format the menu as you wish.

7.2 The Parts of a Menu
A menu entry has three parts, only the second of which is required:1. The menu entry name (optional).2. The name of the node (required).3. A description of the item (optional).
The template for a menu entry looks like this:* menu-entry-name: node-name. descriptionFollow the menu entry name with a single colon and follow the node name with tab,comma, period, or newline.In Info, a user selects a node with the m(Info-menu) command. The menu entry nameis what the user types after the mcommand.The third part of a menu entry is a descriptive phrase or sentence. Menu entry namesand node names are often short; the description explains to the reader what the nodeis about. A useful description complements the node name rather than repeats it. Thedescription, which is optional, can spread over two or more lines; if it does, some authorsprefer to indent the second line while others prefer to align it with the �rst (and all others).It's up to you.

7.3 Less Cluttered Menu Entry
When the menu entry name and node name are the same, you can write the nameimmediately after the asterisk and space at the beginning of the line and follow the namewith two colons.For example, write* Name:: descriptioninstead of* Name: Name. descriptionYou should use the node name for the menu entry name whenever possible, since itreduces visual clutter in the menu.

Chapter 7: Menus 63

7.4 A Menu Example
A menu looks like this in Texinfo:
@menu* menu entry name: Node name. A short description.* Node name:: This form is preferred.@end menu

This produces:
* menu:
* menu entry name: Node name. A short description.* Node name:: This form is preferred.

Here is an example as you might see it in a Texinfo �le:
@menuLarger Units of Text
* Files:: All about handling files.* Multiples: Buffers. Multiple buffers; editingseveral files at once.@end menu

This produces:
* menu:Larger Units of Text
* Files:: All about handling files.* Multiples: Buffers. Multiple buffers; editingseveral files at once.

In this example, the menu has two entries. `Files' is both a menu entry name and thename of the node referred to by that name. `Multiples' is the menu entry name; it refersto the node named `Buffers'. The line `Larger Units of Text' is a comment; it appearsin the menu, but is not an entry.
Since no �le name is speci�ed with either `Files' or `Buffers', they must be the namesof nodes in the same Info �le (see Section 7.5 [Referring to Other Info Files], page 63).

7.5 Referring to Other Info Files
You can create a menu entry that enables a reader in Info to go to a node in anotherInfo �le by writing the �le name in parentheses just before the node name. In this case, youshould use the three-part menu entry format, which saves the reader from having to typethe �le name.
The format looks like this:

Chapter 7: Menus 64

@menu* first-entry-name :(filename)nodename. description* second-entry-name :(filename)second-node. description@end menuFor example, to refer directly to the `Outlining' and `Rebinding' nodes in the Emacs
Manual, you would write a menu like this:

@menu* Outlining: (emacs)Outline Mode. The major mode forediting outlines.* Rebinding: (emacs)Rebinding. How to redefine themeaning of a key.@end menuIf you do not list the node name, but only name the �le, then Info presumes that youare referring to the `Top' node.The `dir' �le that contains the main menu for Info has menu entries that list only �lenames. These take you directly to the `Top' nodes of each Info document. (See Section 20.2[Installing an Info File], page 167.)For example:
* Info: (info). Documentation browsing system.* Emacs: (emacs). The extensible, self-documentingtext editor.(The `dir' top level directory for the Info system is an Info �le, not a Texinfo �le, but amenu entry looks the same in both types of �le.)The GNU Emacs Texinfo mode menu updating commands only work with nodes withinthe current bu�er, so you cannot use them to create menus that refer to other �les. Youmust write such menus by hand.

Chapter 8: Cross References 65

8 Cross References

Cross referencesare used to refer the reader to other parts of the same or di�erentTexinfo �les. In Texinfo, nodes and anchors are the places to which cross references canrefer.
Often, but not always, a printed document should be designed so that it can be readsequentially. People tire of
ipping back and forth to �nd information that should bepresented to them as they need it.
However, in any document, some information will be too detailed for the current con-text, or incidental to it; use cross references to provide access to such information. Also,an online help system or a reference manual is not like a novel; few read such documents insequence from beginning to end. Instead, people look up what they need. For this reason,such creations should contain many cross references to help readers �nd other informationthat they may not have read.
In a printed manual, a cross reference results in a page reference, unless it is to anothermanual altogether, in which case the cross reference names that manual.
In Info, a cross reference results in an entry that you can follow using the Info `f'command. (See Info �le `info', node `Help-Adv'.)
The various cross reference commands use nodes (or anchors, see Section 6.5 [@anchor],page 60) to de�ne cross reference locations. This is evident in Info, in which a cross referencetakes you to the speci�ed location. TEX also uses nodes to de�ne cross reference locations,but the action is less obvious. When TEX generates a DVI �le, it records each node's pagenumber and uses the page numbers in making references. Thus, if you are writing a manualthat will only be printed, and will not be used online, you must nonetheless write @nodelines to name the places to which you make cross references.

8.1 Di�erent Cross Reference Commands
There are four di�erent cross reference commands:

@xref Used to start a sentence in the printed manual saying `See . . . ' or an Infocross-reference saying `*Note name: node.'.
@ref Used within or, more often, at the end of a sentence; same as @xref for Info;produces just the reference in the printed manual without a preceding `See'.
@pxref Used within parentheses to make a reference that suits both an Info �le and aprinted book. Starts with a lower case `see' within the printed manual. (`p' isfor `parenthesis'.)
@inforef Used to make a reference to an Info �le for which there is no printed manual.
(The @cite command is used to make references to books and manuals for which there isno corresponding Info �le and, therefore, no node to which to point. See Section 9.1.12[@cite], page 82.)

Chapter 8: Cross References 66

8.2 Parts of a Cross Reference
A cross reference command requires only one argument, which is the name of thenode to which it refers. But a cross reference command may contain up to four additionalarguments. By using these arguments, you can provide a cross reference name for Info, atopic description or section title for the printed output, the name of a di�erent Info �le,and the name of a di�erent printed manual.Here is a simple cross reference example:
@xref{Node name}.which produces
*Note Node name::.and See Section nnn [Node name], page ppp.Here is an example of a full �ve-part cross reference:
@xref{Node name, Cross Reference Name, Particular Topic,info-file-name, A Printed Manual}, for details.which produces
*Note Cross Reference Name: (info-file-name)Node name,for details.in Info andSee section \Particular Topic" in A Printed Manual, for details.in a printed book.The �ve possible arguments for a cross reference are:1. The node or anchor name (required). This is the location to which the cross referencetakes you. In a printed document, the location of the node provides the page referenceonly for references within the same document.2. The cross reference name for the Info reference, if it is to be di�erent from the nodename. If you include this argument, it becomes the �rst part of the cross reference. Itis usually omitted.3. A topic description or section name. Often, this is the title of the section. This is usedas the name of the reference in the printed manual. If omitted, the node name is used.4. The name of the Info �le in which the reference is located, if it is di�erent from thecurrent �le. You need not include any `.info' su�x on the �le name, since Info readerstry appending it automatically.5. The name of a printed manual from a di�erent Texinfo �le.

The template for a full �ve argument cross reference looks like this:
@xref{node-name, cross-reference-name , title-or-topic ,
info-file-name , printed-manual-title }.Cross references with one, two, three, four, and �ve arguments are described separatelyfollowing the description of @xref.Write a node name in a cross reference in exactly the same way as in the @node line,including the same capitalization; otherwise, the formatters may not �nd the reference.

Chapter 8: Cross References 67

You can write cross reference commands within a paragraph, but note how Info andTEX format the output of each of the various commands: write @xref at the beginning ofa sentence; write @pxref only within parentheses, and so on.
8.3 @xref

The @xref command generates a cross reference for the beginning of a sentence. TheInfo formatting commands convert it into an Info cross reference, which the Info `f' com-mand can use to bring you directly to another node. The TEX typesetting commandsconvert it into a page reference, or a reference to another book or manual.Most often, an Info cross reference looks like this:
*Note node-name::.or like this
*Note cross-reference-name : node-name.In TEX, a cross reference looks like this:See Section section-number [node-name], page page.or like thisSee Section section-number [title-or-topic], page page.The @xref command does not generate a period or comma to end the cross referencein either the Info �le or the printed output. You must write that period or comma yourself;otherwise, Info will not recognize the end of the reference. (The @pxref command worksdi�erently. See Section 8.6 [@pxref], page 72.)
Please note:A period or comma must follow the closing brace of an @xref. Itis required to terminate the cross reference. This period or comma will appearin the output, both in the Info �le and in the printed manual.

@xref must refer to an Info node by name. Use @node to de�ne the node (see Sec-tion 6.3.2 [Writing a Node], page 57).
@xref is followed by several arguments inside braces, separated by commas. Whitespacebefore and after these commas is ignored.A cross reference requires only the name of a node; but it may contain up to four addi-tional arguments. Each of these variations produces a cross reference that looks somewhatdi�erent.

Please note: Commas separate arguments in a cross reference; avoid includingthem in the title or other part lest the formatters mistake them for separators.
8.3.1 @xref with One Argument

The simplest form of @xref takes one argument, the name of another node in the sameInfo �le. The Info formatters produce output that the Info readers can use to jump to thereference; TEX produces output that speci�es the page and section number for you.For example,
@xref{Tropical Storms}.produces

Chapter 8: Cross References 68

*Note Tropical Storms::.
and

See Section 3.1 [Tropical Storms], page 24.
(Note that in the preceding example the closing brace is followed by a period.)

You can write a clause after the cross reference, like this:
@xref{Tropical Storms}, for more info.

which produces
*Note Tropical Storms::, for more info.

and
See Section 3.1 [Tropical Storms], page 24, for more info.

(Note that in the preceding example the closing brace is followed by a comma, and then bythe clause, which is followed by a period.)
8.3.2 @xref with Two Arguments

With two arguments, the second is used as the name of the Info cross reference, whilethe �rst is still the name of the node to which the cross reference points.
The template is like this:

@xref{node-name, cross-reference-name }.
For example,

@xref{Electrical Effects, Lightning}.
produces:

*Note Lightning: Electrical Effects.
and

See Section 5.2 [Electrical E�ects], page 57.
(Note that in the preceding example the closing brace is followed by a period; and that thenode name is printed, not the cross reference name.)

You can write a clause after the cross reference, like this:
@xref{Electrical Effects, Lightning}, for more info.

which produces
*Note Lightning: Electrical Effects, for more info.

and
See Section 5.2 [Electrical E�ects], page 57, for more info.

(Note that in the preceding example the closing brace is followed by a comma, and then bythe clause, which is followed by a period.)

Chapter 8: Cross References 69

8.3.3 @xref with Three Arguments

A third argument replaces the node name in the TEX output. The third argumentshould be the name of the section in the printed output, or else state the topic discussedby that section. Often, you will want to use initial upper case letters so it will be easier toread when the reference is printed. Use a third argument when the node name is unsuitablebecause of syntax or meaning.
Remember to avoid placing a comma within the title or topic section of a cross reference,or within any other section. The formatters divide cross references into arguments accordingto the commas; a comma within a title or other section will divide it into two arguments. Ina reference, you need to write a title such as \Clouds, Mist, and Fog" without the commas.
Also, remember to write a comma or period after the closing brace of an @xref toterminate the cross reference. In the following examples, a clause follows a terminatingcomma.

The template is like this:
@xref{node-name, cross-reference-name , title-or-topic }.

For example,
@xref{Electrical Effects, Lightning, Thunder and Lightning},for details.

produces
*Note Lightning: Electrical Effects, for details.

and
See Section 5.2 [Thunder and Lightning], page 57, for details.

If a third argument is given and the second one is empty, then the third argumentserves both. (Note how two commas, side by side, mark the empty second argument.)
@xref{Electrical Effects, , Thunder and Lightning},for details.

produces
*Note Thunder and Lightning: Electrical Effects, for details.

and
See Section 5.2 [Thunder and Lightning], page 57, for details.

As a practical matter, it is often best to write cross references with just the �rstargument if the node name and the section title are the same, and with the �rst and thirdarguments if the node name and title are di�erent.
Here are several examples from The GNU Awk User's Guide:

@xref{Sample Program}.
@xref{Glossary}.
@xref{Case-sensitivity, ,Case-sensitivity in Matching}.
@xref{Close Output, , Closing Output Files and Pipes},

for more information.
@xref{Regexp, , Regular Expressions as Patterns}.

Chapter 8: Cross References 70

8.3.4 @xref with Four and Five Arguments

In a cross reference, a fourth argument speci�es the name of another Info �le, di�erentfrom the �le in which the reference appears, and a �fth argument speci�es its title as aprinted manual.Remember that a comma or period must follow the closing brace of an @xref commandto terminate the cross reference. In the following examples, a clause follows a terminatingcomma.The template is:
@xref{node-name, cross-reference-name , title-or-topic ,
info-file-name , printed-manual-title }.For example,
@xref{Electrical Effects, Lightning, Thunder and Lightning,weather, An Introduction to Meteorology}, for details.produces
*Note Lightning: (weather)Electrical Effects, for details.The name of the Info �le is enclosed in parentheses and precedes the name of the node.In a printed manual, the reference looks like this:See section \Thunder and Lightning" in An Introduction to Meteorology, fordetails.The title of the printed manual is typeset in italics; and the reference lacks a page numbersince TEX cannot know to which page a reference refers when that reference is to anothermanual.Often, you will leave out the second argument when you use the long version of @xref.In this case, the third argument, the topic description, will be used as the cross referencename in Info.The template looks like this:
@xref{node-name, , title-or-topic , info-file-name ,
printed-manual-title }, for details.which produces
*Note title-or-topic : (info-file-name)node-name, for details.and See section title-or-topic in printed-manual-title , for details.For example,
@xref{Electrical Effects, , Thunder and Lightning,weather, An Introduction to Meteorology}, for details.produces
*Note Thunder and Lightning: (weather)Electrical Effects,for details.and See section \Thunder and Lightning" in An Introduction to Meteorology, fordetails.

Chapter 8: Cross References 71

On rare occasions, you may want to refer to another Info �le that is within a singleprinted manual|when multiple Texinfo �les are incorporated into the same TEX run butmake separate Info �les. In this case, you need to specify only the fourth argument, andnot the �fth.
8.4 Naming a `Top' Node

In a cross reference, you must always name a node. This means that in order to refer toa whole manual, you must identify the `Top' node by writing it as the �rst argument to the@xref command. (This is di�erent from the way you write a menu entry; see Section 7.5[Referring to Other Info Files], page 63.) At the same time, to provide a meaningful sectiontopic or title in the printed cross reference (instead of the word `Top'), you must write anappropriate entry for the third argument to the @xref command.Thus, to make a cross reference to The GNU Make Manual, write:
@xref{Top, , Overview, make, The GNU Make Manual}.which produces
*Note Overview: (make)Top.and See section \Overview" in The GNU Make Manual.In this example, `Top' is the name of the �rst node, and `Overview' is the name of the �rstsection of the manual.

8.5 @ref

@ref is nearly the same as @xref except that it does not generate a `See' in the printedoutput, just the reference itself. This makes it useful as the last part of a sentence.For example,
For more information, see @ref{Hurricanes}.produces
For more information, see *Note Hurricanes::.and For more information, see Section 8.2 [Hurricanes], page 123.The @ref command sometimes leads writers to express themselves in a manner thatis suitable for a printed manual but looks awkward in the Info format. Bear in mind thatyour audience will be using both the printed and the Info format.For example,
Sea surges are described in @ref{Hurricanes}.producesSea surges are described in Section 6.7 [Hurricanes], page 72.in a printed document, and the following in Info:

Chapter 8: Cross References 72

Sea surges are described in *Note Hurricanes::.
Caution: You must write a period, comma, or right parenthesis immediatelyafter an @ref command with two or more arguments. Otherwise, Info will not�nd the end of the cross reference entry and its attempt to follow the crossreference will fail. As a general rule, you should write a period or comma afterevery @ref command. This looks best in both the printed and the Info output.

8.6 @pxref

The parenthetical reference command, @pxref, is nearly the same as @xref, but youuse it only inside parentheses and you do not type a comma or period after the command'sclosing brace. The command di�ers from @xref in two ways:
1. TEX typesets the reference for the printed manual with a lower case `see' rather thanan upper case `See'.
2. The Info formatting commands automatically end the reference with a closing colon orperiod.

Because one type of formatting automatically inserts closing punctuation and the otherdoes not, you should use @pxref only inside parentheses as part of another sentence. Also,you yourself should not insert punctuation after the reference, as you do with @xref.
@pxref is designed so that the output looks right and works right between parenthesesboth in printed output and in an Info �le. In a printed manual, a closing comma or periodshould not follow a cross reference within parentheses; such punctuation is wrong. But in anInfo �le, suitable closing punctuation must follow the cross reference so Info can recognizeits end. @pxref spares you the need to use complicated methods to put a terminator intoone form of the output and not the other.

With one argument, a parenthetical cross reference looks like this:
... storms cause flooding (@pxref{Hurricanes}) ...

which produces
... storms cause flooding (*Note Hurricanes::) ...

and
. . . storms cause
ooding (see Section 6.7 [Hurricanes], page 72) . . .

With two arguments, a parenthetical cross reference has this template:
... (@pxref{node-name, cross-reference-name }) ...

which produces
... (*Note cross-reference-name : node-name.) ...

and

Chapter 8: Cross References 73

. . . (see Section nnn [node-name], page ppp) . . .
@pxref can be used with up to �ve arguments just like @xref (see Section 8.3 [@xref],page 67).

Please note: Use @pxref only as a parenthetical reference. Do not try to use@pxref as a clause in a sentence. It will look bad in either the Info �le, theprinted output, or both.Also, parenthetical cross references look best at the ends of sentences. Althoughyou may write them in the middle of a sentence, that location breaks up the
ow of text.
8.7 @inforef

@inforef is used for cross references to Info �les for which there are no printed manuals.Even in a printed manual, @inforef generates a reference directing the user to look in anInfo �le.The command takes either two or three arguments, in the following order:1. The node name.2. The cross reference name (optional).3. The Info �le name.
Separate the arguments with commas, as with @xref. Also, you must terminate the refer-ence with a comma or period after the `}', as you do with @xref.The template is:

@inforef{node-name, cross-reference-name , info-file-name },Thus,
@inforef{Expert, Advanced Info commands, info},for more information.

produces
*Note Advanced Info commands: (info)Expert,for more information.

and See Info �le `info', node `Expert', for more information.Similarly,
@inforef{Expert, , info}, for more information.produces
*Note (info)Expert::, for more information.and See Info �le `info', node `Expert', for more information.The converse of @inforef is @cite, which is used to refer to printed works for whichno Info form exists. See Section 9.1.12 [@cite], page 82.

Chapter 8: Cross References 74

8.8 @uref{url [, text][, replacement]}

@uref produces a reference to a uniform resource locator (url). It takes one mandatoryargument, the url, and two optional arguments which control the text that is displayed. InHTML output, @uref produces a link you can follow.The second argument, if speci�ed, is the text to display (the default is the url itself);in Info and DVI output, but not in HTML output, the url is also output.The third argument, on the other hand, if speci�ed is also the text to display, but the urlis not output in any format. This is useful when the text is already su�ciently referential,as in a man page. If the third argument is given, the second argument is ignored.The simple one argument form, where the url is both the target and the text of thelink:
The official GNU ftp site is @uref{ftp://ftp.gnu.org/gnu}.produces:The o�cial GNU ftp site is ftp://ftp.gnu.org/gnu.An example of the two-argument form:
The official @uref{ftp://ftp.gnu.org/gnu, GNU ftp site}holds programs and texts.produces:The o�cial GNU ftp siteholds programs and texts.that is, the Info output is this:
The official GNU ftp site (ftp://ftp.gnu.org/gnu)holds programs and texts.and the HTML output is this:
The official GNU ftp siteholds programs and texts.An example of the three-argument form:
The @uref{/man.cgi/1/ls,,ls(1)} program ...produces:The ls(1) program . . .but with HTML:
The ls(1) program ...To merely indicate a url without creating a link people can follow, use @url (seeSection 9.1.14 [url], page 82).Some people prefer to display url's in the unambiguous format:
<URL:http://host/path>You can use this form in the input �le if you wish. We feel it's not necessary to clutter upthe output with the extra `<URL:' and `>', since any software that tries to detect url's intext already has to detect them without the `<URL:' to be useful.

ftp://ftp.gnu.org/gnu
ftp://ftp.gnu.org/gnu
/man.cgi/1/ls

Chapter 9: Marking Words and Phrases 75

9 Marking Words and Phrases

In Texinfo, you can mark words and phrases in a variety of ways. The Texinfo for-matters use this information to determine how to highlight the text. You can specify, forexample, whether a word or phrase is a de�ning occurrence, a metasyntactic variable, or asymbol used in a program. Also, you can emphasize text, in several di�erent ways.
9.1 Indicating De�nitions, Commands, etc.

Texinfo has commands for indicating just what kind of object a piece of text refersto. For example, metasyntactic variables are marked by @var, and code by @code. Sincethe pieces of text are labelled by commands that tell what kind of object they are, it iseasy to change the way the Texinfo formatters prepare such text. (Texinfo is an intentionalformatting language rather than a typesetting formatting language.)For example, in a printed manual, code is usually illustrated in a typewriter font;@code tells TEX to typeset this text in this font. But it would be easy to change the wayTEX highlights code to use another font, and this change would not a�ect how keystrokeexamples are highlighted. If straight typesetting commands were used in the body of the�le and you wanted to make a change, you would need to check every single occurrence tomake sure that you were changing code and not something else that should not be changed.The highlighting commands can be used to extract useful information from the �le,such as lists of functions or �le names. It is possible, for example, to write a programin Emacs Lisp (or a keyboard macro) to insert an index entry after every paragraph thatcontains words or phrases marked by a speci�ed command. You could do this to constructan index of functions if you had not already made the entries.The commands serve a variety of purposes:
@code{sample-code }Indicate text that is a literal example of a piece of a program.
@kbd{keyboard-characters }Indicate keyboard input.
@key{key-name}Indicate the conventional name for a key on a keyboard.
@samp{text }Indicate text that is a literal example of a sequence of characters.
@var{metasyntactic-variable }Indicate a metasyntactic variable.
@env{environment-variable }Indicate an environment variable.
@file{file-name }Indicate the name of a �le.
@command{command-name}Indicate the name of a command.

Chapter 9: Marking Words and Phrases 76

@option{option }Indicate a command-line option.
@dfn{term }Indicate the introductory or de�ning use of a term.
@cite{reference }Indicate the name of a book.
@acronym{acronym}Indicate an acronym.
@url{uniform-resource-locator }Indicate a uniform resource locator for the World Wide Web.
@email{email-address [, displayed-text]}Indicate an electronic mail address.
9.1.1 @code{sample-code }

Use the @code command to indicate text that is a piece of a program and which consistsof entire syntactic tokens. Enclose the text in braces.Thus, you should use @code for an expression in a program, for the name of a variableor function used in a program, or for a keyword in a programming language.Use @code for command names in languages that resemble programming languages,such as Texinfo. For example, @code and @samp are produced by writing `@code{@@code}'and `@code{@@samp}' in the Texinfo source, respectively.It is incorrect to alter the case of a word inside an @code command when it appears atthe beginning of a sentence. Most computer languages are case sensitive. In C, for example,Printf is di�erent from the identi�er printf, and most likely is a misspelling of it. Evenin languages which are not case sensitive, it is confusing to a human reader to see identi�ersspelled in di�erent ways. Pick one spelling and always use that. If you do not want tostart a sentence with a command name written all in lower case, you should rearrange thesentence.In the printed manual, @code causes TEX to typeset the argument in a typewriterface. In the Info �le, it causes the Info formatting commands to use single quotation marksaround the text.For example,
The function returns @code{nil}.produces this in the printed manual:The function returns nil.and this in the Info �le:
The function returns `nil'.Here are some cases for which it is preferable not to use @code:

� For shell command names such as ls (use @command).
� For shell options such as `-c' when such options stand alone (use @option).

Chapter 9: Marking Words and Phrases 77

� Also, an entire shell command often looks better if written using @samp rather than@code. In this case, the rule is to choose the more pleasing format.� For environment variable such as TEXINPUTS (use @env).� For a string of characters shorter than a syntactic token. For example, if you arewriting about `goto-ch', which is just a part of the name for the goto-char EmacsLisp function, you should use @samp.� In general, when writing about the characters used in a token; for example, do not use@code when you are explaining what letters or printable symbols can be used in thenames of functions. (Use @samp.) Also, you should not use @code to mark text thatis considered input to programs unless the input is written in a language that is likea programming language. For example, you should not use @code for the keystrokecommands of GNU Emacs (use @kbd instead) although you may use @code for thenames of the Emacs Lisp functions that the keystroke commands invoke.
Since @command, @option, and @env were introduced relatively recently, it is acceptableto use @code or @samp for command names, options, and environment variables. The newcommands allow you to express the markup more precisely, but there is no real harm inusing the older commands, and of course the long-standing manuals do so.

9.1.2 @kbd{keyboard-characters }

Use the @kbd command for characters of input to be typed by users. For example, torefer to the characters M-a, write@kbd{M-a}and to refer to the characters M-x shell , write@kbd{M-x shell}The @kbd command has the same e�ect as @code in Info, but by default produces adi�erent font (slanted typewriter instead of normal typewriter) in the printed manual, sousers can distinguish the characters they are supposed to type from those the computeroutputs.Since the usage of @kbd varies from manual to manual, you can control the font switch-ing with the @kbdinputstyle command. This command has no e�ect on Info output.Write this command at the beginning of a line with a single word as an argument, one ofthe following:
`code' Always use the same font for @kbd as @code.
`example' Use the distinguishing font for @kbd only in @example and similar environments.
`distinct' (the default) Always use the distinguishing font for @kbd.

You can embed another @-command inside the braces of an @kbd command. Here, forexample, is the way to describe a command that would be described more verbosely as\press an `r' and then press the hRETi key":@kbd{r @key{RET}}This produces: r hRETiYou also use the @kbd command if you are spelling out the letters you type; for example:

Chapter 9: Marking Words and Phrases 78

To give the @code{logout} command,type the characters @kbd{l o g o u t @key{RET}}.This produces:To give the logout command, type the characters l o g o u t hRETi .(Also, this example shows that you can add spaces for clarity. If you really want tomention a space character as one of the characters of input, write @key{SPC} for it.)
9.1.3 @key{key-name }

Use the @key command for the conventional name for a key on a keyboard, as in:
@key{RET}You can use the @key command within the argument of an @kbd command when thesequence of characters to be typed includes one or more keys that are described by name.For example, to produce C-x hESCi you would type:
@kbd{C-x @key{ESC}}Here is a list of the recommended names for keys:
SPC Space
RET Return
LFD Linefeed (however, since most keyboards nowadays do not have aLinefeed key, it might be better to call this character C-j .
TAB Tab
BS Backspace
ESC Escape
DEL Delete
SHIFT Shift
CTRL Control
META Meta

There are subtleties to handling words like `meta' or `ctrl' that are names of modi�erkeys. When mentioning a character in which the modi�er key is used, such as Meta-a, usethe @kbd command alone; do not use the @key command; but when you are referring to themodi�er key in isolation, use the @key command. For example, write `@kbd{Meta-a}' toproduce Meta-a and `@key{META}' to produce hMETAi .
9.1.4 @samp{text }

Use the @samp command to indicate text that is a literal example or `sample' of asequence of characters in a �le, string, pattern, etc. Enclose the text in braces. Theargument appears within single quotation marks in both the Info �le and the printed manual;in addition, it is printed in a �xed-width font.

Chapter 9: Marking Words and Phrases 79

To match @samp{foo} at the end of the line,use the regexp @samp{foo$}.producesTo match `foo' at the end of the line, use the regexp `foo$'.Any time you are referring to single characters, you should use @samp unless @kbd or@key is more appropriate. Also, you may use @samp for entire statements in C and for entireshell commands|in this case, @samp often looks better than @code. Basically, @samp is acatchall for whatever is not covered by @code, @kbd, or @key.Only include punctuation marks within braces if they are part of the string you arespecifying. Write punctuation marks outside the braces if those punctuation marks are partof the English text that surrounds the string. In the following sentence, for example, thecommas and period are outside of the braces:
In English, the vowels are @samp{a}, @samp{e},@samp{i}, @samp{o}, @samp{u}, and sometimes@samp{y}.This produces:In English, the vowels are `a', `e', `i', `o', `u', and sometimes `y'.

9.1.5 @verb{<char >text <char >}

Use the @verb command to print a verbatim sequence of characters.Like LaTEX's \verb command, the verbatim text can be quoted using any uniquedelimiter character. Enclose the verbatim text, including the delimiters, in braces. Text isprinted in a �xed-width font:
How many @verb{|@|}-escapes does one need to print this@verb{.@a @b @c.} string or @verb{+@'e?`!`{}\+} this?produces
How many @-escapes does one need to print this@a @b @c string or these @'e?`{}!`\ this?This is in contrast to @samp (see the previous section), whose argument is normalTexinfo text, where the characters @{} are special; with @verb, nothing is special exceptthe delimiter character you choose.

9.1.6 @var{metasyntactic-variable }

Use the @var command to indicate metasyntactic variables. A metasyntactic variable issomething that stands for another piece of text. For example, you should use a metasyntacticvariable in the documentation of a function to describe the arguments that are passed tothat function.Do not use @var for the names of particular variables in programming languages.These are speci�c names from a program, so @code is correct for them (see Section 9.1.1[code], page 76). For example, the Emacs Lisp variable texinfo-tex-command is not ametasyntactic variable; it is properly formatted using @code.

Chapter 9: Marking Words and Phrases 80

Do not use @var for environment variables either; @env is correct for them (see thenext section).The e�ect of @var in the Info �le is to change the case of the argument to all uppercase. In the printed manual and HTML output, the argument is printed in slanted type.For example,
To delete file @var{filename},type @samp{rm @var{filename}}.producesTo delete �le �lename, type `rm filename '.(Note that @var may appear inside @code, @samp, @file, etc.)Write a metasyntactic variable all in lower case without spaces, and use hyphens tomake it more readable. Thus, the Texinfo source for the illustration of how to begin aTexinfo manual looks like this:
\input texinfo@@setfilename @var{info-file-name}@@settitle @var{name-of-manual}This produces:
\input texinfo@setfilename info-file-name@settitle name-of-manualIn some documentation styles, metasyntactic variables are shown with angle brackets,for example:
..., type rm <filename>However, that is not the style that Texinfo uses. (You can, of course, modify the sources to`texinfo.tex' and the Info formatting commands to output the <...> format if you wish.)

9.1.7 @env{environment-variable }

Use the @env command to indicate environment variables, as used by many operatingsystems, including GNU. Do not use it for metasyntactic variables; use @var instead (seethe previous section).
@env is equivalent to @code in its e�ects. For example:
The @env{PATH} environment variable ...producesThe PATH environment variable . . .

9.1.8 @file{ �le-name }

Use the @file command to indicate text that is the name of a �le, bu�er, or directory,or is the name of a node in Info. You can also use the command for �le name su�xes. Donot use @file for symbols in a programming language; use @code.Currently, @file is equivalent to @samp in its e�ects. For example,

Chapter 9: Marking Words and Phrases 81

The @file{.el} files are inthe @file{/usr/local/emacs/lisp} directory.
produces

The `.el' �les are in the `/usr/local/emacs/lisp' directory.
9.1.9 @command{command-name }

Use the @command command to indicate command names, such as ls or cc.
@command is equivalent to @code in its e�ects. For example:
The command @command{ls} lists directory contents.

produces
The command ls lists directory contents.

You should write the name of a program in the ordinary text font, rather than using@command, if you regard it as a new English word, such as `Emacs' or `Bison'.
When writing an entire shell command invocation, as in `ls -l', you should use either@samp or @code at your discretion.

9.1.10 @option{option-name }

Use the @option command to indicate a command-line option; for example, `-l' or`--version' or `--output=filename '.
@option is equivalent to @samp in its e�ects. For example:
The option @option{-l} produces a long listing.

produces
The option `-l' produces a long listing.

In tables, putting options inside @code produces a more pleasing e�ect.
9.1.11 @dfn{term }

Use the @dfn command to identify the introductory or de�ning use of a technical term.Use the command only in passages whose purpose is to introduce a term which will be usedagain or which the reader ought to know. Mere passing mention of a term for the �rst timedoes not deserve @dfn. The command generates italics in the printed manual, and doublequotation marks in the Info �le. For example:
Getting rid of a file is called @dfn{deleting} it.

produces
Getting rid of a �le is called deleting it.

As a general rule, a sentence containing the de�ning occurrence of a term should be ade�nition of the term. The sentence does not need to say explicitly that it is a de�nition,but it should contain the information of a de�nition|it should make the meaning clear.

Chapter 9: Marking Words and Phrases 82

9.1.12 @cite{ reference }

Use the @cite command for the name of a book that lacks a companion Info �le. Thecommand produces italics in the printed manual, and quotation marks in the Info �le.
If a book is written in Texinfo, it is better to use a cross reference command since areader can easily follow such a reference in Info. See Section 8.3 [@xref], page 67.

9.1.13 @acronym{acronym }

Use the @acronym command for abbreviations written in all capital letters, such as`nasa '. The abbreviation is given as the single argument in braces, as in `@acronym{NASA}'.As a matter of style, or for particular abbreviations, you may prefer to use periods, as in`@acronym{F.B.I.}'.
In TEX and HTML, the argument is printed in a slightly smaller font size. In Info orplain text output, this command changes nothing.

9.1.14 @url{uniform-resource-locator }

Use the @url command to indicate a uniform resource locator on the World WideWeb. This is analogous to @file, @var, etc., and is purely for markup purposes. It doesnot produce a link you can follow in HTML output (use the @uref command for that, seeSection 8.8 [@uref], page 74). It is useful for url's which do not actually exist. For example:
For example, the url might be @url{http://example.org/path}.

which produces:
For example, the url might be http://example.org/path.

9.1.15 @email{email-address [, displayed-text]}

Use the @email command to indicate an electronic mail address. It takes one manda-tory argument, the address, and one optional argument, the text to display (the default isthe address itself).
In Info and TEX, the address is shown in angle brackets, preceded by the text to displayif any. In HTML output, @email produces a `mailto' link that usually brings up a mailcomposition window. For example:
Send bug reports to @email{bug-texinfo@@gnu.org},suggestions to the @email{bug-texinfo@@gnu.org, same place}.

produces
Send bug reports to bug-texinfo@gnu.org,suggestions to the same place.

mailto:bug-texinfo@gnu.org
mailto:bug-texinfo@gnu.org

Chapter 9: Marking Words and Phrases 83

9.2 Emphasizing Text
Usually, Texinfo changes the font to mark words in the text according to what categorythe words belong to; an example is the @code command. Most often, this is the best wayto mark words. However, sometimes you will want to emphasize text without indicating acategory. Texinfo has two commands to do this. Also, Texinfo has several commands thatspecify the font in which TEX will typeset text. These commands have no e�ect on Infoand only one of them, the @r command, has any regular use.

9.2.1 @emph{text } and @strong{text }

The @emph and @strong commands are for emphasis; @strong is stronger. In printedoutput, @emph produces italics and @strong produces bold.For example,@quotation@strong{Caution:} @samp{rm * .[^.]*} removes @emph{all}files in the directory.@end quotationproduces the following in printed output:
Caution: `rm * .[^.]*' removes all �les in the directory.and the following in Info:*Caution*: `rm * .[^.]*' removes _all_files in the directory.The @strong command is seldom used except to mark what is, in e�ect, a typographicalelement, such as the word `Caution' in the preceding example.In the Info output, @emph surrounds the text with underscores (`_'), and @strong putsasterisks around the text.
Caution: Do not use @strong with the word `Note'; Info will mistake thecombination for a cross reference. Use a phrase such as Please noteor Cautioninstead.

9.2.2 @sc{text } : The Small Caps Font

Use the `@sc' command to set text in the printed and the HTML output in a small
caps font and set text in the Info �le in upper case letters. Write the text you want tobe in small caps (where possible) between braces in lower case, like this:The @sc{acm} and @sc{ieee} are technical societies.This produces:The acm and ieee are technical societies.TEX typesets the small caps font in a manner that prevents the letters from `jumping outat you on the page'. This makes small caps text easier to read than text in all upper case|but it's usually better to use regular mixed case anyway. The Info formatting commandsset all small caps text in upper case. In HTML, the text is upper-cased and a smaller fontis used to render it.

Chapter 9: Marking Words and Phrases 84

If the text between the braces of an @sc command is uppercase, TEX typesets in FULL-SIZE CAPITALS. Use full-size capitals sparingly, if ever, and since it's redundant to markall-uppercase text with @sc, makeinfo warns about such usage.You may also use the small caps font for a jargon word such as ato (a nasa wordmeaning `abort to orbit').There are subtleties to using the small caps font with a jargon word such as cdr , aword used in Lisp programming. In this case, you should use the small caps font when theword refers to the second and subsequent elements of a list (the cdr of the list), but youshould use `@code' when the word refers to the Lisp function of the same spelling.
9.2.3 Fonts for Printing, Not Info

Texinfo provides four font commands that specify font changes in the printed manualbut have no e�ect in the Info �le. @i requests italic font (in some versions of TEX, a slantedfont is used), @b requests bold face, @t requests the fixed-width, typewriter-style font usedby @code, and @r requests a roman font, which is the usual font in which text is printed.All four commands apply to an argument that follows, surrounded by braces.Only the @r command has much use: in example programs, you can use the @r com-mand to convert code comments from the �xed-width font to a roman font. This looksbetter in printed output.For example,
@lisp(+ 2 2) ; @r{Add two plus two.}@end lispproduces
(+ 2 2) ; Add two plus two.If possible, you should avoid using the other three font commands. If you need to useone, it probably indicates a gap in the Texinfo language.

Chapter 10: Quotations and Examples 85

10 Quotations and Examples

Quotations and examples are blocks of text consisting of one or more whole paragraphsthat are set o� from the bulk of the text and treated di�erently. They are usually indented.In Texinfo, you always begin a quotation or example by writing an @-command at thebeginning of a line by itself, and end it by writing an @end command that is also at thebeginning of a line by itself. For instance, you begin an example by writing @example byitself at the beginning of a line and end the example by writing @end example on a line byitself, at the beginning of that line.
10.1 Block Enclosing Commands

Here are commands for quotations and examples, explained further in the followingsections:
@quotationIndicate text that is quoted. The text is �lled, indented, and printed in a romanfont by default.
@example Illustrate code, commands, and the like. The text is printed in a �xed-widthfont, and indented but not �lled.
@verbatim Mark a piece of text that is to be printed verbatim; no character substitutionsare made and all commands are ignored, until the next @end verbatim. Thetext is printed in a �xed-width font, and not indented or �lled. Extra spacesand blank lines are signi�cant, and tabs are expanded.
@smallexampleSame as @example, except that in TEX this command typesets text in a smallerfont.
@lisp Like @example, but speci�cally for illustrating Lisp code. The text is printedin a �xed-width font, and indented but not �lled.
@smalllispIs to @lisp as @smallexample is to @example.
@display Display illustrative text. The text is indented but not �lled, and no font isselected (so, by default, the font is roman).
@smalldisplayIs to @display as @smallexample is to @example.
@format Like @display (the text is not �lled and no font is selected), but the text is notindented.
@smallformatIs to @format as @smallexample is to @example.

The @exdent command is used within the above constructs to undo the indentation ofa line.

Chapter 10: Quotations and Examples 86

The @flushleft and @flushright commands are used to line up the left or rightmargins of un�lled text.The @noindent command may be used after one of the above constructs to preventthe following text from being indented as a new paragraph.You can use the @cartouche command within one of the above constructs to high-light the example or quotation by drawing a box with rounded corners around it. SeeSection 10.13 [Drawing Cartouches Around Examples], page 92.
10.2 @quotation

The text of a quotation is processed normally except that:
� the margins are closer to the center of the page, so the whole of the quotation isindented;
� the �rst lines of paragraphs are indented no more than other lines;
� in the printed output, interparagraph spacing is reduced.

This is an example of text written between an @quotation command and an@end quotation command. An @quotation command is most often used toindicate text that is excerpted from another (real or hypothetical) printed work.Write an @quotation command as text on a line by itself. This line will disappearfrom the output. Mark the end of the quotation with a line beginning with and containingonly @end quotation. The @end quotation line will likewise disappear from the output.Thus, the following,
@quotationThis isa foo.@end quotationproducesThis is a foo.

10.3 @example: Example Text
The @example environment is used to indicate an example that is not part of therunning text, such as computer input or output. Write an @example command at thebeginning of a line by itself. Mark the end of the example with an @end example command,also written at the beginning of a line by itself.An @example environment has the following characteristics:Each line in the input �le is a line in the output; that is, the source text is not �lled asit normally is.Extra spaces and blank lines are signi�cant.The output is indented.The output uses a �xed-width font (for formats where this is possible and meaningful).

Chapter 10: Quotations and Examples 87

Texinfo commands are expanded; if you want the input to be the output verbatim, usethe @verbatim environment instead (see Section 10.4 [@verbatim], page 87).
For example,
@examplecp foo @var{dest1}; \cp foo @var{dest2}@end exampleproduces
cp foo dest1 ; \cp foo dest2The lines containing @example and @end example will disappear from the output. Tomake the output look good, you should put a blank line before the @example and anotherblank line after the @end example. Blank lines inside the beginning @example and theending @end example, on the other hand, do appear in the output.
Caution: Do not use tabs in the lines of an example! (Or anywhere else inTexinfo, except in verbatim environments.) TEX treats tabs as single spaces,and that is not what they look like. In Emacs, you can use M-x untabify toconvert tabs in a region to multiple spaces.Examples are often, logically speaking, \in the middle" of a paragraph, and the textthat continues afterwards should not be indented, as in the example above. The @noindentcommand prevents a piece of text from being indented as if it were a new paragraph (seeSection 10.12 [@noindent], page 91.If you want to embed code fragments within sentences, instead of displaying them, usethe @code command or its relatives (see Section 9.1.1 [@code], page 76).

10.4 @verbatim: Literal Text
Use the @verbatim environment for printing of text that may contain special charactersor commands that should not be interpreted, such as computer input or output (@exampleinterprets its text as regular Texinfo commands). This is especially useful for includingautomatically generated output in a Texinfo manual. Here is an example; the output yousee is just the same as the input, with a line @verbatim before and a line @end verbatimafter.

This is an example of text written in a @verbatimblock. No character substitutions are made. All commandsare ignored, until `<at>end verbatim'.
In the printed manual, the text is typeset in afixed-width font, and not indented or filled. Allspaces and blank lines are significant, including tabs.Write a @verbatim command at the beginning of a line by itself. This line will disappearfrom the output. Mark the end of the verbatim block with a @end verbatim command, alsowritten at the beginning of a line by itself. The @end verbatim will also disappear fromthe output.

Chapter 10: Quotations and Examples 88

For example:
@verbatim{<tab>@command with strange characters: @'eexpand<tab>me}@end verbatimproduces
{ @command with strange characters: @'eexpand me} Since the lines containing @verbatim and @end verbatim produce no output, tyicallyyou should put a blank line before the @verbatim and another blank line after the @endverbatim. Blank lines between the beginning @verbatim and the ending @end verbatimwill appear in the output.
10.5 @verbatiminclude �le : Include a File Verbatim

You can include the exact contents of a �le in the document with the @verbatimincludecommand:
@verbatiminclude filenameThe contents of �lename is printed in a verbatim environment (see Section 10.4[@verbatim], page 87). Generally, the �le is printed exactly as it is, with all specialcharacters and white space retained.The name of the �le is taken literally, with a single exception: @value{var } referencesare expanded. This makes it possible to reliably include �les in other directories in adistribution, for instance:
@include @value{top_srcdir}/NEWS(You still have to get top_srcdir de�ned in the �rst place.)

10.6 @lisp: Marking a Lisp Example
The @lisp command is used for Lisp code. It is synonymous with the @examplecommand.
This is an example of text written between an@lisp command and an @end lisp command.Use @lisp instead of @example to preserve information regarding the nature of theexample. This is useful, for example, if you write a function that evaluates only and all theLisp code in a Texinfo �le. Then you can use the Texinfo �le as a Lisp library.1Mark the end of @lisp with @end lisp on a line by itself.

1 It would be straightforward to extend Texinfo to work in a similar fashion for C, Fortran, or other
languages.

Chapter 10: Quotations and Examples 89

10.7 @small... Block Commands
In addition to the regular @example and @lisp commands, Texinfo has \small"example-style commands. These are @smalldisplay, @smallexample, @smallformat, and@smalllisp.In Info, the @small... commands are equivalent to their non-small companion com-mands.In TEX, however, the @small... commands typeset text in a smaller font than thenon-small example commands. Consequently, many examples containing long lines �t on apage without needing to be shortened.Mark the end of an @small... block with a corresponding @end small.... For exam-ple, pair @smallexample with @end smallexample.Here is an example of the font used by the @small... commands (in Info, the outputwill be the same as usual):

... to make sure that you have the freedom to
distribute copies of free software (and charge for
this service if you wish), that you receive source
code or can get it if you want it, that you can
change the software or use pieces of it in new free
programs; and that you know you can do these things.The @small... commands make it easier to prepare manuals without forcing you toedit examples by hand to �t them onto narrower pages.As a general rule, a printed document looks much better if you use only one of (forinstance) @example or @smallexample consistently within a chapter.

10.8 @display and @smalldisplay

The @display command begins a kind of example. It is like the @example commandexcept that, in a printed manual, @display does not select the �xed-width font. In fact,it does not specify the font at all, so that the text appears in the same font it would haveappeared in without the @display command.This is an example of text written between an @display commandand an @end display command. The @display commandindents the text, but does not �ll it.Texinfo also provides a command @smalldisplay, which is like @display but uses asmaller font in @smallbook format. See Section 10.7 [small], page 89.
10.9 @formatand @smallformat

The @format command is similar to @example except that, in the printed manual,@format does not select the �xed-width font and does not narrow the margins.This is an example of text written between an @format commandand an @end format command. As you can seefrom this example,

Chapter 10: Quotations and Examples 90

the @format command does not �ll the text.
Texinfo also provides a command @smallformat, which is like @format but uses asmaller font in @smallbook format. See Section 10.7 [small], page 89.

10.10 @exdent: Undoing a Line's Indentation
The @exdent command removes any indentation a line might have. The command iswritten at the beginning of a line and applies only to the text that follows the commandthat is on the same line. Do not use braces around the text. In a printed manual, the texton an @exdent line is printed in the roman font.
@exdent is usually used within examples. Thus,
@exampleThis line follows an @@example command.@exdent This line is exdented.This line follows the exdented line.The @@end example comes on the next line.@end group

produces
This line follows an @example command.This line is exdented.This line follows the exdented line.The @end example comes on the next line.

In practice, the @exdent command is rarely used. Usually, you un-indent text by endingthe example and returning the page to its normal width.
10.11 @flushleft and @flushright

The @flushleft and @flushright commands line up the ends of lines on the left andright margins of a page, but do not �ll the text. The commands are written on lines of theirown, without braces. The @flushleft and @flushright commands are ended by @endflushleft and @end flushright commands on lines of their own.
For example,
@flushleftThis text iswritten flushleft.@end flushleft

produces
This text iswritten
ushleft.

@flushright produces the type of indentation often used in the return address ofletters. For example,

Chapter 10: Quotations and Examples 91

@flushrightHere is an example of text writtenflushright. The @code{@flushright} commandright justifies every line but leaves theleft end ragged.@end flushrightproduces Here is an example of text written
ushright. The @flushright commandright justi�es every line but leaves theleft end ragged.
10.12 @noindent: Omitting Indentation

An example or other inclusion can break a paragraph into segments. Ordinarily, theformatters indent text that follows an example as a new paragraph. You can preventthis on a case-by-case basis by writing @noindent at the beginning of a line, precedingthe continuation text. You can also disable indentation for all paragraphs globally with@paragraphindent (see Section 3.6.3 [paragraphindent], page 43).It is best to write @noindent on a line by itself, since in most environments, spacesfollowing the command will not be ignored. It's ok to use it at the beginning of a line, withtext following, outside of any environment.For example:
@exampleThis is an example@end example
@noindentThis line is not indented. As you can see, thebeginning of the line is fully flush left with the linethat follows after it. (This whole example is between@code{@@display} and @code{@@end display}.)produces:

This is an example

This line is not indented. As you can see, thebeginning of the line is fully
ush left with the linethat follows after it. (This whole example is between@display and @end display.)
To adjust the number of blank lines properly in the Info �le output, remember thatthe line containing @noindent does not generate a blank line, and neither does the @endexample line.

Chapter 10: Quotations and Examples 92

In the Texinfo source �le for this manual, each line that says `produces' is preceded by@noindent.Do not put braces after an @noindent command; they are not necessary, since@noindent is a command used outside of paragraphs (see Appendix H [Command Syntax],page 219).
10.13 @cartouche: Rounded Rectangles Around Examples

In a printed manual, the @cartouche command draws a box with rounded cornersaround its contents. You can use this command to further highlight an example or quotation.For instance, you could write a manual in which one type of example is surrounded by acartouche for emphasis.
@cartouche a�ects only the printed manual; it has no e�ect in other output �les.For example,
@example@cartouche% pwd/usr/local/share/emacs@end cartouche@end examplesurrounds the two-line example with a box with rounded corners, in the printed manual.In a printed manual, the example looks like this:
� �

% pwd/usr/local/lib/emacs/info

 	

Chapter 11: Lists and Tables 93

11 Lists and Tables

Texinfo has several ways of making lists and tables. Lists can be bulleted or numbered;two-column tables can highlight the items in the �rst column; multi-column tables are alsosupported.Texinfo automatically indents the text in lists or tables, and numbers an enumeratedlist. This last feature is useful if you modify the list, since you do not need to renumber ityourself.Numbered lists and tables begin with the appropriate @-command at the beginning ofa line, and end with the corresponding @end command on a line by itself. The table anditemized-list commands also require that you write formatting information on the same lineas the beginning @-command.Begin an enumerated list, for example, with an @enumerate command and end the listwith an @end enumerate command. Begin an itemized list with an @itemize command,followed on the same line by a formatting command such as @bullet, and end the list withan @end itemize command.Precede each element of a list with an @item or @itemx command.
Here is an itemized list of the di�erent kinds of table and lists:
� Itemized lists with and without bullets.
� Enumerated lists, using numbers or letters.
� Two-column tables with highlighting.

Here is an enumerated list with the same items:1. Itemized lists with and without bullets.2. Enumerated lists, using numbers or letters.3. Two-column tables with highlighting.
And here is a two-column table with the same items and their @-commands:
@itemize Itemized lists with and without bullets.
@enumerateEnumerated lists, using numbers or letters.
@table@ftable@vtable Two-column tables, optionally with indexing.
11.1 @itemize: Making an Itemized List

The @itemize command produces sequences of indented paragraphs, with a bullet orother mark inside the left margin at the beginning of each paragraph for which such a markis desired.

Chapter 11: Lists and Tables 94

Begin an itemized list by writing @itemize at the beginning of a line. Follow thecommand, on the same line, with a character or a Texinfo command that generates a mark.Usually, you will write @bullet after @itemize, but you can use @minus, or any commandor character that results in a single character in the Info �le. If you don't want any markat all, use @w. (When you write the mark command such as @bullet after an @itemizecommand, you may omit the `{}'.) If you don't specify a mark command, the default is@bullet.Write the text of the indented paragraphs themselves after the @itemize, up to anotherline that says @end itemize.Before each paragraph for which a mark in the margin is desired, write a line that saysjust @item. It is ok to have text following the @item.Usually, you should put a blank line before an @item. This puts a blank line in the Info�le. (TEX inserts the proper interline whitespace in either case.) Except when the entriesare very brief, these blank lines make the list look better.Here is an example of the use of @itemize, followed by the output it produces. @bulletproduces an `*' in Info and a round dot in TEX.@itemize @bullet@itemSome text for foo.
@itemSome textfor bar.@end itemizeThis produces:� Some text for foo.� Some text for bar.

Itemized lists may be embedded within other itemized lists. Here is a list marked withdashes embedded in a list marked with bullets:@itemize @bullet@itemFirst item.
@itemize @minus@itemInner item.
@itemSecond inner item.@end itemize
@itemSecond outer item.@end itemizeThis produces:

Chapter 11: Lists and Tables 95

� First item.� Inner item.� Second inner item.� Second outer item.
11.2 @enumerate: Making a Numbered or Lettered List

@enumerate is like @itemize (see Section 11.1 [@itemize], page 93), except that thelabels on the items are successive integers or letters instead of bullets.Write the @enumerate command at the beginning of a line. The command does notrequire an argument, but accepts either a number or a letter as an option. Without anargument, @enumerate starts the list with the number `1'. With a numeric argument, suchas `3', the command starts the list with that number. With an upper or lower case letter,such as `a' or `A', the command starts the list with that letter.Write the text of the enumerated list in the same way you write an itemized list: put@item on a line of its own before the start of each paragraph that you want enumerated.Do not write any other text on the line beginning with @item.You should put a blank line between entries in the list. This generally makes it easierto read the Info �le.Here is an example of @enumerate without an argument:@enumerate@itemUnderlying causes.
@itemProximate causes.@end enumerateThis produces:1. Underlying causes.2. Proximate causes.

Here is an example with an argument of 3:
@enumerate 3@itemPredisposing causes.
@itemPrecipitating causes.
@itemPerpetuating causes.@end enumerateThis produces:

Chapter 11: Lists and Tables 96

3. Predisposing causes.4. Precipitating causes.5. Perpetuating causes.
Here is a brief summary of the alternatives. The summary is constructed using@enumerate with an argument of a.

a. @enumerateWithout an argument, produce a numbered list, starting with the number 1.b. @enumerate positive-integerWith a (positive) numeric argument, start a numbered list with that number. You canuse this to continue a list that you interrupted with other text.c. @enumerate upper-case-letterWith an upper case letter as argument, start a list in which each item is marked by aletter, beginning with that upper case letter.d. @enumerate lower-case-letterWith a lower case letter as argument, start a list in which each item is marked by aletter, beginning with that lower case letter.
You can also nest enumerated lists, as in an outline.

11.3 Making a Two-column Table
@table is similar to @itemize (see Section 11.1 [@itemize], page 93), but allows you tospecify a name or heading line for each item. The @table command is used to produce two-column tables, and is especially useful for glossaries, explanatory exhibits, and command-line option summaries.

11.3.1 Using the @table Command

Use the @table command to produce two-column tables. It is usually listed for \def-inition lists" of various sorts, where you have a list of terms and a brief text with eachone. Write the @table command at the beginning of a line, after a blank line, and follow iton the same line with an argument that is a Texinfo \indicating" command such as @code,@samp, @var, @option, or @kbd (see Section 9.1 [Indicating], page 75).This command will be applied to the text that goes into the �rst column of each itemand thus determines how it will be highlighted. For example, @table @code will cause thetext in the �rst column to be output as if it @code command.You may also use the @asis command as an argument to @table. @asis is a commandthat does nothing; if you use this command after @table, the �rst column entries are outputwithout added highlighting (\as is").The @table command works with other commands besides those explicitly mentionedhere. However, you can only use commands that normally take arguments in braces. (In this

Chapter 11: Lists and Tables 97

case, however, you use the command name without an argument, because the subsequent@item's will supply the argument.)Begin each table entry with an @item command at the beginning of a line. Write the�rst column text on the same line as the @item command. Write the second column texton the line following the @item line and on subsequent lines. (You do not need to typeanything for an empty second column entry.) You may write as many lines of supportingtext as you wish, even several paragraphs. But only the text on the same line as the @itemwill be placed in the �rst column (including any footnotes).Normally, you should put a blank line before an @item line. This puts a blank line inthe Info �le. Except when the entries are very brief, a blank line looks better.End the table with a line consisting of @end table, followed by a blank line. TEX willalways start a new paragraph after the table, so the blank line is needed for the Info outputto be analogous.The following table, for example, highlights the text in the �rst column with an @sampcommand:
@table @samp@item fooThis is the text for@samp{foo}.
@item barText for @samp{bar}.@end tableThis produces:

`foo' This is the text for `foo'.
`bar' Text for `bar'.

If you want to list two or more named items with a single block of text, use the @itemxcommand. (See Section 11.3.3 [@itemx], page 98.)
11.3.2 @ftable and @vtable

The @ftable and @vtable commands are the same as the @table command exceptthat @ftable automatically enters each of the items in the �rst column of the table into theindex of functions and @vtable automatically enters each of the items in the �rst columnof the table into the index of variables. This simpli�es the task of creating indices. Onlythe items on the same line as the @item commands are indexed, and they are indexed inexactly the form that they appear on that line. See Chapter 12 [Indices], page 100, for moreinformation about indices.Begin a two-column table using @ftable or @vtable by writing the @-command at thebeginning of a line, followed on the same line by an argument that is a Texinfo commandsuch as @code, exactly as you would for an @table command; and end the table with an@end ftable or @end vtable command on a line by itself.See the example for @table in the previous section.

Chapter 11: Lists and Tables 98

11.3.3 @itemx

Use the @itemx command inside a table when you have two or more �rst column entriesfor the same item, each of which should appear on a line of its own. Use @itemx for all butthe �rst entry; @itemx should always follow an @item command. The @itemx commandworks exactly like @item except that it does not generate extra vertical space above the�rst column text.
For example,
@table @code@item upcase@itemx downcaseThese two functions accept a character or a string asargument, and return the corresponding upper case (lowercase) character or string.@end tableThis produces:

upcasedowncase These two functions accept a character or a string as argument, and return thecorresponding upper case (lower case) character or string.
(Note also that this example illustrates multi-line supporting text in a two-column table.)
11.4 Multi-column Tables

@multitable allows you to construct tables with any number of columns, with eachcolumn having any width you like.
You de�ne the column widths on the @multitable line itself, and write each row of theactual table following an @item command, with columns separated by an @tab command.Finally, @end multitable completes the table. Details in the sections below.

11.4.1 Multitable Column Widths

You can de�ne the column widths for a multitable in two ways: as fractions of the linelength; or with a prototype row. Mixing the two methods is not supported. In either case,the widths are de�ned entirely on the same line as the @multitable command.
1. To specify column widths as fractions of the line length, write @columnfractions andthe decimal numbers (presumably less than 1) after the @multitable command, as in:

@multitable @columnfractions .33 .33 .33The fractions need not add up exactly to 1.0, as these do not. This allows you toproduce tables that do not need the full line length. You can use a leading zero if youwish.2. To specify a prototype row, write the longest entry for each column enclosed in bracesafter the @multitable command. For example:

Chapter 11: Lists and Tables 99

@multitable {some text for column one} {for column two}The �rst column will then have the width of the typeset `some text for column one',and the second column the width of `for column two'.The prototype entries need not appear in the table itself.Although we used simple text in this example, the prototype entries can contain Texinfocommands; markup commands such as @code are particularly likely to be useful.
11.4.2 Multitable Rows

After the @multitable command de�ning the column widths (see the previous section),you begin each row in the body of a multitable with @item, and separate the column entrieswith @tab. Line breaks are not special within the table body, and you may break inputlines in your source �le as necessary.Here is a complete example of a multi-column table (the text is from The GNU Emacs
Manual, see section \Splitting Windows" in The GNU Emacs Manual):

@multitable @columnfractions .15 .45 .4@item Key @tab Command @tab Description@item C-x 2@tab @code{split-window-vertically}@tab Split the selected window into two windows,with one above the other.@item C-x 3@tab @code{split-window-horizontally}@tab Split the selected window into two windowspositioned side by side.@item C-Mouse-2@tab@tab In the mode line or scroll bar of a window,split that window.@end multitableproduces:Key Command DescriptionC-x 2 split-window-vertically Split the selected window intotwo windows, with one above theother.C-x 3 split-window-horizontally Split the selected window into twowindows positioned side by side.C-Mouse-2 In the mode line or scroll bar of awindow, split that window.

Chapter 12: Indices 100

12 Indices

Using Texinfo, you can generate indices without having to sort and collate entriesmanually. In an index, the entries are listed in alphabetical order, together with informationon how to �nd the discussion of each entry. In a printed manual, this information consistsof page numbers. In an Info �le, this information is a menu entry leading to the �rst nodereferenced.
Texinfo provides several prede�ned kinds of index: an index for functions, an index forvariables, an index for concepts, and so on. You can combine indices or use them for otherthan their canonical purpose. If you wish, you can de�ne your own indices.

12.1 Making Index Entries
When you are making index entries, it is good practice to think of the di�erent wayspeople may look for something. Di�erent people do not think of the same words whenthey look something up. A helpful index will have items indexed under all the di�erentwords that people may use. For example, one reader may think it obvious that the two-letter names for indices should be listed under \Indices, two-letter names", since the word\Index" is the general concept. But another reader may remember the speci�c concept oftwo-letter names and search for the entry listed as \Two letter names for indices". A goodindex will have both entries and will help both readers.
Like typesetting, the construction of an index is a highly skilled, professional art, thesubtleties of which are not appreciated until you need to do it yourself.
See Section 4.1 [Printing Indices & Menus], page 45, for information about printing anindex at the end of a book or creating an index menu in an Info �le.

12.2 Prede�ned Indices
Texinfo provides six prede�ned indices:

� A concept index listing concepts that are discussed.
� A function index listing functions (such as entry points of libraries).
� A variables index listing variables (such as global variables of libraries).
� A keystroke index listing keyboard commands.
� A program index listing names of programs.
� A data type index listing data types (such as structures de�ned in header �les).

Not every manual needs all of these, and most manuals use two or three of them. Thismanual has two indices: a concept index and an @-command index (that is actually thefunction index but is called a command index in the chapter heading). Two or moreindices can be combined into one using the @synindex or @syncodeindex commands. SeeSection 12.4 [Combining Indices], page 102.

Chapter 12: Indices 101

12.3 De�ning the Entries of an Index
The data to make an index come from many individual indexing commands scatteredthroughout the Texinfo source �le. Each command says to add one entry to a particularindex; after formatting, the index will give the current page number or node name as thereference.An index entry consists of an indexing command at the beginning of a line followed,on the rest of the line, by the entry.For example, this section begins with the following �ve entries for the concept index:
@cindex Defining indexing entries@cindex Index entries@cindex Entries for an index@cindex Specifying index entries@cindex Creating index entriesEach prede�ned index has its own indexing command|@cindex for the concept index,@findex for the function index, and so on.Concept index entries consist of text. The best way to write an index is to chooseentries that are terse yet clear. If you can do this, the index often looks better if the entriesare not capitalized, but written just as they would appear in the middle of a sentence.(Capitalize proper names and acronyms that always call for upper case letters.) This is thecase convention we use in most GNU manuals' indices.If you don't see how to make an entry terse yet clear, make it longer and clear|notterse and confusing. If many of the entries are several words long, the index may lookbetter if you use a di�erent convention: to capitalize the �rst word of each entry. But donot capitalize a case-sensitive name such as a C or Lisp function name or a shell command;that would be a spelling error.Whichever case convention you use, please use it consistently!Entries in indices other than the concept index are symbol names in programminglanguages, or program names; these names are usually case-sensitive, so use upper andlower case as required for them.By default, entries for a concept index are printed in a small roman font and entriesfor the other indices are printed in a small @code font. You may change the way part of anentry is printed with the usual Texinfo commands, such as @file for �le names and @emphfor emphasis (see Chapter 9 [Marking Text], page 75).The six indexing commands for prede�ned indices are:

@cindex conceptMake an entry in the concept index for concept.
@findex functionMake an entry in the function index for function.
@vindex variableMake an entry in the variable index for variable.
@kindex keystrokeMake an entry in the key index for keystroke.

Chapter 12: Indices 102

@pindex programMake an entry in the program index for program.
@tindex data typeMake an entry in the data type index for data type.

Caution: Do not use a colon in an index entry. In Info, a colon separates themenu entry name from the node name, so a colon in the entry itself confusesInfo. See Section 7.2 [The Parts of a Menu], page 62, for more informationabout the structure of a menu entry.You are not actually required to use the prede�ned indices for their canonical purposes.For example, suppose you wish to index some C preprocessor macros. You could put themin the function index along with actual functions, just by writing @findex commands forthem; then, when you print the \Function Index" as an unnumbered chapter, you couldgive it the title `Function and Macro Index' and all will be consistent for the reader. Oryou could put the macros in with the data types by writing @tindex commands for them,and give that index a suitable title so the reader will understand. (See Section 4.1 [PrintingIndices & Menus], page 45.)
12.4 Combining Indices

Sometimes you will want to combine two disparate indices such as functions and con-cepts, perhaps because you have few enough of one of them that a separate index for themwould look silly.You could put functions into the concept index by writing @cindex commands for theminstead of @findex commands, and produce a consistent manual by printing the conceptindex with the title `Function and Concept Index' and not printing the `Function Index' atall; but this is not a robust procedure. It works only if your document is never includedas part of another document that is designed to have a separate function index; if yourdocument were to be included with such a document, the functions from your documentand those from the other would not end up together. Also, to make your function namesappear in the right font in the concept index, you would need to enclose every one of thembetween the braces of @code.
12.4.1 @syncodeindex

When you want to combine functions and concepts into one index, you should index thefunctions with @findex and index the concepts with @cindex, and use the @syncodeindexcommand to redirect the function index entries into the concept index.The @syncodeindex command takes two arguments; they are the name of the indexto redirect, and the name of the index to redirect it to. The template looks like this:
@syncodeindex from toFor this purpose, the indices are given two-letter names:

`cp' concept index
`fn' function index

Chapter 12: Indices 103

`vr' variable index
`ky' key index
`pg' program index
`tp' data type index

Write an @syncodeindex command before or shortly after the end-of-header line at thebeginning of a Texinfo �le. For example, to merge a function index with a concept index,write the following:
@syncodeindex fn cpThis will cause all entries designated for the function index to merge in with the conceptindex instead.To merge both a variables index and a function index into a concept index, write thefollowing:
@syncodeindex vr cp@syncodeindex fn cpThe @syncodeindex command puts all the entries from the `from' index (the redirectedindex) into the @code font, overriding whatever default font is used by the index to whichthe entries are now directed. This way, if you direct function names from a function indexinto a concept index, all the function names are printed in the @code font as you wouldexpect.

12.4.2 @synindex

The @synindex command is nearly the same as the @syncodeindex command, exceptthat it does not put the `from' index entries into the @code font; rather it puts them inthe roman font. Thus, you use @synindex when you merge a concept index into a functionindex.See Section 4.1 [Printing Indices & Menus], page 45, for information about printing anindex at the end of a book or creating an index menu in an Info �le.
12.5 De�ning New Indices

In addition to the prede�ned indices, you may use the @defindex and @defcodeindexcommands to de�ne new indices. These commands create new indexing @-commands withwhich you mark index entries. The @defindex command is used like this:
@defindex nameThe name of an index should be a two letter word, such as `au'. For example:
@defindex auThis de�nes a new index, called the `au' index. At the same time, it creates a newindexing command, @auindex, that you can use to make index entries. Use the new indexingcommand just as you would use a prede�ned indexing command.For example, here is a section heading followed by a concept index entry and two `au'index entries.

Chapter 12: Indices 104

@section Cognitive Semantics@cindex kinesthetic image schemas@auindex Johnson, Mark@auindex Lakoff, George(Evidently, `au' serves here as an abbreviation for \author".) Texinfo constructs the newindexing command by concatenating the name of the index with `index'; thus, de�ning an`au' index leads to the automatic creation of an @auindex command.Use the @printindex command to print the index, as you do with the prede�nedindices. For example:
@node Author Index, Subject Index, , Top@unnumbered Author Index
@printindex auThe @defcodeindex is like the @defindex command, except that, in the printed output,it prints entries in an @code font instead of a roman font. Thus, it parallels the @findexcommand rather than the @cindex command.You should de�ne new indices within or right after the end-of-header line of a Texinfo�le, before any @synindex or @syncodeindex commands (see Section 3.2 [Texinfo FileHeader], page 30).

Chapter 13: Special Insertions 105

13 Special Insertions

Texinfo provides several commands for inserting characters that have special meaningin Texinfo, such as braces, and for other graphic elements that do not correspond to simplecharacters you can type.These are:
� Braces and `@'.
� Whitespace within and around a sentence.
� Accents.
� Dots and bullets.
� The TEX logo and the copyright symbol.
� The pounds currency symbol.
� The minus sign.
� Mathematical expressions.
� Glyphs for evaluation, macros, errors, etc.
� Footnotes.
� Images.

13.1 Inserting @and Braces
`@' and curly braces are special characters in Texinfo. To insert these characters sothey appear in text, you must put an `@' in front of these characters to prevent Texinfofrom misinterpreting them.Do not put braces after any of these commands; they are not necessary.

13.1.1 Inserting ` @' with @@

@@ stands for a single `@' in either printed or Info output.Do not put braces after an @@ command.
13.1.2 Inserting ` { ' and ` } 'with @{and @}

@{ stands for a single `{' in either printed or Info output.
@} stands for a single `}' in either printed or Info output.Do not put braces after either an @{ or an @} command.

13.2 Inserting Space
The following sections describe commands that control spacing of various kinds withinand after sentences.

Chapter 13: Special Insertions 106

13.2.1 Not Ending a Sentence

Depending on whether a period or exclamation point or question mark is inside or atthe end of a sentence, less or more space is inserted after a period in a typeset manual.Since it is not always possible to determine when a period ends a sentence and when itis used in an abbreviation, special commands are needed in some circumstances. Usually,Texinfo can guess how to handle periods, so you do not need to use the special commands;you just enter a period as you would if you were using a typewriter, which means you puttwo spaces after the period, question mark, or exclamation mark that ends a sentence.Use the @: command after a period, question mark, exclamation mark, or colon thatshould not be followed by extra space. For example, use @: after periods that end abbrevi-ations which are not at the ends of sentences.For example,
The s.o.p.@: has three parts ...The s.o.p. has three parts ...produces the following. If you look carefully at this printed output, you will see a littlemore whitespace after `s.o.p.' in the second line.The s.o.p. has three parts . . .The s.o.p. has three parts . . .(Incidentally, `s.o.p.' is an abbreviation for \Standard Operating Procedure".)

@: has no e�ect on the Info output. Do not put braces after @:.
13.2.2 Ending a Sentence

Use @. instead of a period, @! instead of an exclamation point, and @? instead of aquestion mark at the end of a sentence that ends with a single capital letter. Otherwise,TEX will think the letter is an abbreviation and will not insert the correct end-of-sentencespacing. Here is an example:
Give it to M.I.B. and to M.E.W@. Also, give it to R.J.C@.Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.produces the following. If you look carefully at this printed output, you will see a littlemore whitespace after the `W' in the �rst line.Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.In the Info �le output, @. is equivalent to a simple `.'; likewise for @! and @?.The meanings of @: and @. in Texinfo are designed to work well with the Emacssentence motion commands (see section \Sentences" in The GNU Emacs Manual).Do not put braces after any of these commands.

13.2.3 Multiple Spaces

Ordinarily, TEX collapses multiple whitespace characters (space, tab, and newline) intoa single space. Info output, on the other hand, preserves whitespace as you type it, except

Chapter 13: Special Insertions 107

for changing a newline into a space; this is why it is important to put two spaces at the endof sentences in Texinfo documents.Occasionally, you may want to actually insert several consecutive spaces, either forpurposes of example (what your program does with multiple spaces as input), or merelyfor purposes of appearance in headings or lists. Texinfo supports three commands: @SPACE,@TAB, and @NL, all of which insert a single space into the output. (Here, @SPACErepresentsan `@' character followed by a space, i.e., `@ ', and TABand NL represent the tab characterand end-of-line, i.e., when `@' is the last character on a line.)For example,
Spacey@ @ @ @example.produces
Spacey example.Other possible uses of @SPACEhave been subsumed by @multitable (see Section 11.4[Multi-column Tables], page 98).Do not follow any of these commands with braces.To produce a non-breakable space, see Section 14.5 [tie], page 119.

13.2.4 @dmn{dimension } : Format a Dimension

At times, you may want to write `12 pt' or `8.5 in' with little or no space betweenthe number and the abbreviation for the dimension. You can use the @dmn command to dothis. On seeing the command, TEX inserts just enough space for proper typesetting; theInfo formatting commands insert no space at all, since the Info �le does not require it.To use the @dmn command, write the number and then follow it immediately, with nointervening space, by @dmn, and then by the dimension within braces. For example,
A4 paper is 8.27@dmn{in} wide.producesA4 paper is 8.27 in wide.Not everyone uses this style. Some people prefer `8.27 in.@:' or `8.27 inches' to`8.27@dmn{in}' in the Texinfo �le. In these cases, however, the formatters may insert a linebreak between the number and the dimension, so use @w (see Section 14.4 [w], page 118).Also, if you write a period after an abbreviation within a sentence, you should write `@:' afterthe period to prevent TEX from inserting extra whitespace, as shown here. See Section 13.2.1[Not Ending a Sentence], page 106.

13.3 Inserting Accents
Here is a table with the commands Texinfo provides for inserting
oating accents. Thecommands with non-alphabetic names do not take braces around their argument (which istaken to be the next character). (Exception: @, does take braces around its argument.)This is so as to make the source as convenient to type and read as possible, since accentedcharacters are very common in some languages.

Chapter 13: Special Insertions 108

Command Output What@"o �o umlaut accent@'o �o acute accent@,{c} �c cedilla accent@=o �o macron/overbar accent@^o ô circum
ex accent@`o �o grave accent@~o ~o tilde accent@dotaccent{o} _o overdot accent@H{o} }o long Hungarian umlaut@ringaccent{o} �o ring accent@tieaccent{oo} �oo tie-after accent@u{o} �o breve accent@ubaraccent{o} o� underbar accent@udotaccent{o} o. underdot accent@v{o} �o hacek or check accentThis table lists the Texinfo commands for inserting other characters commonly used inlanguages other than English.@exclamdown{} < upside-down !@questiondown{} > upside-down ?@aa{},@AA{} �a,�A a,A with circle@ae{},@AE{} �,� ae,AE ligatures@dotless{i} � dotless i@dotless{j} � dotless j@l{},@L{} l, L suppressed-L,l@o{},@O{} �,� O,o with slash@oe{},@OE{} �,� oe,OE ligatures@ss{} � es-zet or sharp S
13.4 Inserting Ellipsis and Bullets

An ellipsis (a line of dots) is not typeset as a string of periods, so a special command isused for ellipsis in Texinfo. The @bullet command is special, too. Each of these commandsis followed by a pair of braces, `{}', without any whitespace between the name of thecommand and the braces. (You need to use braces with these commands because you canuse them next to other text; without the braces, the formatters would be confused. SeeAppendix H [@-Command Syntax], page 219, for further information.)
13.4.1 @dots{} (. . .) and @enddots{} (. . . .)

Use the @dots{} command to generate an ellipsis, which is three dots in a row, appro-priately spaced, like this: `. . . '. Do not simply write three periods in the input �le; thatwould work for the Info �le output, but would produce the wrong amount of space betweenthe periods in the printed manual.Similarly, the @enddots{} command generates an end-of-sentence ellipsis (four dots). . . .

Chapter 13: Special Insertions 109

Here is an ellipsis: . . . Here are three periods in a row: ...In printed output, the three periods in a row are closer together than the dots in theellipsis.
13.4.2 @bullet{} (�)

Use the @bullet{} command to generate a large round dot, or the closest possiblething to one. In Info, an asterisk is used.Here is a bullet: �When you use @bullet in @itemize, you do not need to type the braces, because@itemize supplies them. (See Section 11.1 [@itemize], page 93.)
13.5 Inserting TEX and the Copyright Symbol

The logo `TEX' is typeset in a special fashion and it needs an @-command. The copyrightsymbol, ` c
', is also special. Each of these commands is followed by a pair of braces, `{}',without any whitespace between the name of the command and the braces.
13.5.1 @TeX{}(TEX)

Use the @TeX{} command to generate `TEX'. In a printed manual, this is a special logothat is di�erent from three ordinary letters. In Info, it just looks like `TeX'. The @TeX{}command is unique among Texinfo commands in that the `T' and the `X' are in upper case.
13.5.2 @copyright{} (c
)

Use the @copyright{} command to generate ` c
'. In a printed manual, this is a `c'inside a circle, and in Info, this is `(C)'.
13.6 @pounds{}($): Pounds Sterling

Use the @pounds{} command to generate `$'. In a printed manual, this is the symbolfor the currency pounds sterling. In Info, it is a `#'. Other currency symbols are unfortu-nately not available.
13.7 @minus{} (�): Inserting a Minus Sign

Use the @minus{} command to generate a minus sign. In a �xed-width font, this is asingle hyphen, but in a proportional font, the symbol is the customary length for a minussign|a little longer than a hyphen, shorter than an em-dash:`�' is a minus sign generated with `@minus{}',
`-' is a hyphen generated with the character `-',

Chapter 13: Special Insertions 110

`|' is an em-dash for text.In the �xed-width font used by Info, @minus{} is the same as a hyphen.You should not use @minus{} inside @code or @example because the width distinctionis not made in the �xed-width font they use.When you use @minus to specify the mark beginning each entry in an itemized list, youdo not need to type the braces (see Section 11.1 [@itemize], page 93.)
13.8 @math: Inserting Mathematical Expressions

You can write a short mathematical expression with the @math command. Write themathematical expression between braces, like this:@math{(a + b)(a + b) = a^2 + 2ab + b^2}This produces the following in TEX:(a + b)(a + b) = a2 + 2ab + b2and the following in Info:(a + b)(a + b) = a^2 + 2ab + b^2Thus, the @math command has no e�ect on the Info output; makeinfo just reproducesthe input, it does not try to interpret the mathematics in any way.@math implies @tex. This not only makes it possible to write superscripts and subscripts(as in the above example), but also allows you to use any of the plain TEX math controlsequences. It's conventional to use `\' instead of `@' for these commands. As in:@math{\sin 2\pi \equiv \cos 3\pi}which looks like this in TEX:sin 2� � cos 3�and which looks like the input in Info and HTML:\sin 2\pi \equiv \cos 3\piSince `\' is an escape character inside @math, you can use @\ to get a literal backslash(\\ will work in TEX, but you'll get the literal `\\' in Info). @\ is not de�ned outside of@math, since a `\' ordinarily produces a literal `\'.For displayed equations, you must at present use TEX directly (see Section 16.3 [RawFormatter Commands], page 135).
13.9 Glyphs for Examples

In Texinfo, code is often illustrated in examples that are delimited by @example and@end example, or by @lisp and @end lisp. In such examples, you can indicate the results ofevaluation or an expansion using `)' or ` 7!'. Likewise, there are commands to insert glyphsto indicate printed output, error messages, equivalence of expressions, and the location ofpoint.The glyph-insertion commands do not need to be used within an example, but mostoften they are. Every glyph-insertion command is followed by a pair of left- and right-handbraces.

Chapter 13: Special Insertions 111

13.9.1 Glyphs Summary

Here are the di�erent glyph commands:
) @result{} points to the result of an expression.
7! @expansion{} shows the results of a macro expansion.
a @print{} indicates printed output.
error @error{} indicates that the following text is an error message.
� @equiv{} indicates the exact equivalence of two forms.
? @point{} shows the location of point.
13.9.2 @result{} ()): Indicating Evaluation

Use the @result{} command to indicate the result of evaluating an expression.The @result{} command is displayed as `=>' in Info and as `)' in the printed output.Thus, the following,
(cdr '(1 2 3))) (2 3)may be read as \(cdr '(1 2 3)) evaluates to (2 3)".

13.9.3 @expansion{} (7!): Indicating an Expansion

When an expression is a macro call, it expands into a new expression. You can indicatethe result of the expansion with the @expansion{} command.The @expansion{} command is displayed as `==>' in Info and as ` 7!' in the printedoutput.For example, the following
@lisp(third '(a b c))@expansion{} (car (cdr (cdr '(a b c))))@result{} c@end lispproduces
(third '(a b c))7! (car (cdr (cdr '(a b c))))) cwhich may be read as:
(third '(a b c)) expands to (car (cdr (cdr '(a b c)))); the result of eval-uating the expression is c.Often, as in this case, an example looks better if the @expansion{} and @result{} com-mands are indented �ve spaces.

Chapter 13: Special Insertions 112

13.9.4 @print{} (a): Indicating Printed Output

Sometimes an expression will print output during its execution. You can indicate theprinted output with the @print{} command.The @print{} command is displayed as `-|' in Info and as ` a ' in the printed output.In the following example, the printed text is indicated with ` a ', and the value of theexpression follows on the last line.
(progn (print 'foo) (print 'bar))a fooa bar) barIn a Texinfo source �le, this example is written as follows:
@lisp(progn (print 'foo) (print 'bar))@print{} foo@print{} bar@result{} bar@end lisp

13.9.5 @error{} (error): Indicating an Error Message

A piece of code may cause an error when you evaluate it. You can designate the errormessage with the @error{} command.The @error{} command is displayed as `error-->' in Info and as ` error ' in theprinted output.Thus,
@lisp(+ 23 'x)@error{} Wrong type argument: integer-or-marker-p, x@end lispproduces
(+ 23 'x)error Wrong type argument: integer-or-marker-p, xThis indicates that the following error message is printed when you evaluate the expression:
Wrong type argument: integer-or-marker-p, x` error ' itself is not part of the error message.

13.9.6 @equiv{} (�): Indicating Equivalence

Sometimes two expressions produce identical results. You can indicate the exact equiv-alence of two forms with the @equiv{} command.The @equiv{} command is displayed as `==' in Info and as `� ' in the printed output.Thus,

Chapter 13: Special Insertions 113

@lisp(make-sparse-keymap) @equiv{} (list 'keymap)@end lisp
produces

(make-sparse-keymap) � (list 'keymap)
This indicates that evaluating (make-sparse-keymap) produces identical results to evalu-ating (list 'keymap).
13.9.7 @point{} (?): Indicating Point in a Bu�er

Sometimes you need to show an example of text in an Emacs bu�er. In such examples,the convention is to include the entire contents of the bu�er in question between two linesof dashes containing the bu�er name.
You can use the `@point{}' command to show the location of point in the text in thebu�er. (The symbol for point, of course, is not part of the text in the bu�er; it indicatesthe place between two characters where point is located.)
The @point{} command is displayed as `-!-' in Info and as `?' in the printed output.
The following example shows the contents of bu�er `foo' before and after evaluating aLisp command to insert the word changed.
---------- Buffer: foo ----------This is the ?contents of foo.---------- Buffer: foo ----------
(insert "changed ")) nil---------- Buffer: foo ----------This is the changed ?contents of foo.---------- Buffer: foo ----------

In a Texinfo source �le, the example is written like this:
@example---------- Buffer: foo ----------This is the @point{}contents of foo.---------- Buffer: foo ----------
(insert "changed ")@result{} nil---------- Buffer: foo ----------This is the changed @point{}contents of foo.---------- Buffer: foo ----------@end example

Chapter 13: Special Insertions 114

13.10 Footnotes
A footnote is for a reference that documents or elucidates the primary text.1

13.10.1 Footnote Commands

In Texinfo, footnotes are created with the @footnote command. This command isfollowed immediately by a left brace, then by the text of the footnote, and then by aterminating right brace. Footnotes may be of any length (they will be broken across pagesif necessary), but are usually short. The template is:
ordinary text@footnote{text of footnote }As shown here, the @footnote command should come right after the text being foot-noted, with no intervening space; otherwise, the footnote marker might end up starting aline. For example, this clause is followed by a sample footnote2; in the Texinfo source, itlooks like this:
...a sample footnote@footnote{Here is the samplefootnote.}; in the Texinfo source...As you can see, the source includes two punctuation marks next to each other; in thiscase, `.};' is the sequence. This is normal (the �rst ends the footnote and the secondbelongs to the sentence being footnoted), so don't worry that it looks odd.In a printed manual or book, the reference mark for a footnote is a small, superscriptednumber; the text of the footnote appears at the bottom of the page, below a horizontal line.In Info, the reference mark for a footnote is a pair of parentheses with the footnotenumber between them, like this: `(1)'. The reference mark is followed by a cross-referencelink to the footnote's text.In the HTML output, footnote references are marked with a small, superscripted num-ber which is rendered as a hypertext link to the footnote text.By the way, footnotes in the argument of an @item command for a @table must be onthe same line as the @item (as usual). See Section 11.3 [Two-column Tables], page 96.

13.10.2 Footnote Styles

Info has two footnote styles, which determine where the text of the footnote is located:
� In the `End' node style, all the footnotes for a single node are placed at the end of thatnode. The footnotes are separated from the rest of the node by a line of dashes withthe word `Footnotes' within it. Each footnote begins with an `(n)' reference mark.Here is an example of a single footnote in the end of node style:
1 A footnote should complement or expand upon the primary text, but a reader should not need to read

a footnote to understand the primary text. For a thorough discussion of footnotes, see The Chicago
Manual of Style , which is published by the University of Chicago Press.2 Here is the sample footnote.

Chapter 13: Special Insertions 115

--------- Footnotes ---------
(1) Here is a sample footnote.� In the `Separate' node style, all the footnotes for a single node are placed in an auto-matically constructed node of their own. In this style, a \footnote reference" followseach `(n)' reference mark in the body of the node. The footnote reference is actuallya cross reference which you use to reach the footnote node.The name of the node with the footnotes is constructed by appending `-Footnotes' tothe name of the node that contains the footnotes. (Consequently, the footnotes' nodefor the `Footnotes' node is `Footnotes-Footnotes'!) The footnotes' node has an `Up'node pointer that leads back to its parent node.Here is how the �rst footnote in this manual looks after being formatted for Info in theseparate node style:
File: texinfo.info Node: Overview-Footnotes, Up: Overview

(1) The first syllable of "Texinfo" is pronounced like "speck", not
"hex". ...

A Texinfo �le may be formatted into an Info �le with either footnote style.Use the @footnotestyle command to specify an Info �le's footnote style. Write thiscommand at the beginning of a line followed by an argument, either `end' for the end nodestyle or `separate' for the separate node style.For example,
@footnotestyle endor
@footnotestyle separateWrite an @footnotestyle command before or shortly after the end-of-header line atthe beginning of a Texinfo �le. (If you include the @footnotestyle command betweenthe start-of-header and end-of-header lines, the region formatting commands will formatfootnotes as speci�ed.)If you do not specify a footnote style, the formatting commands use their default style.Currently, texinfo-format-buffer and texinfo-format-region use the `separate' styleand makeinfo uses the `end' style.

13.11 Inserting Images
You can insert an image given in an external �le with the @image command:
@image{filename , [width], [height], [alttext], [extension]}The �lename argument is mandatory, and must not have an extension, because thedi�erent processors support di�erent formats:

� TEX reads the �le `filename .eps' (Encapsulated PostScript format).
� PDFTEX reads `filename .pdf' (Adobe's Portable Document Format).
� makeinfo uses `filename .txt' verbatim for Info output (more or less as if it was an@example).

Chapter 13: Special Insertions 116

� makeinfo uses the optional �fth argument to @image for the extension if you supplyit. For example:
@image{foo,,,,xpm}will cause `makeinfo --html' to try `foo.xpm'.If you do not supply the optional �fth argument, `makeinfo ---html' �rst tries`filename .png'; if that does not exist, it tries `filename .jpg'. If that does notexist either, it complains. (We cannot support GIF format directly due to softwarepatents.)

The optional width and height arguments specify the size to scale the image to (theyare ignored for Info output). If neither is speci�ed, the image is presented in its natural size(given in the �le); if only one is speci�ed, the other is scaled proportionately; and if bothare speci�ed, both are respected, thus possibly distorting the original image by changingits aspect ratio.The width and height may be speci�ed using any valid TEX dimension, namely:
pt point (72.27pt = 1in)
pc pica (1pc = 12pt)
bp big point (72bp = 1in)
in inch
cm centimeter (2.54cm = 1in)
mm millimeter (10mm = 1cm)
dd didôt point (1157dd = 1238pt)
cc cicero (1cc = 12dd)
sp scaled point (65536sp = 1pt)

For example, the following will scale a �le `ridt.eps' to one inch vertically, with thewidth scaled proportionately:
@image{ridt,,1in}For @image to work with TEX, the �le `epsf.tex' must be installed somewhere thatTEX can �nd it. (The standard location is `texmf /tex/generic/dvips/epsf.tex', where

texmf is a root of your TEX directory tree.) This �le is included in the Texinfo distributionand is also available from ftp://tug.org/tex/epsf.tex, among other places.
@image can be used within a line as well as for displayed �gures. Therefore, if youintend it to be displayed, be sure to leave a blank line before the command, or the outputwill run into the preceding text.When producing html, makeinfo sets the alt attribute for inline images to the optionalfourth argument to @image, if supplied. If not supplied, makeinfo uses the full �le name ofthe image being displayed.

ftp://tug.org/tex/epsf.tex

Chapter 14: Making and Preventing Breaks 117

14 Making and Preventing Breaks

Usually, a Texinfo �le is processed both by TEX and by one of the Info formattingcommands. Line, paragraph, or page breaks sometimes occur in the `wrong' place in oneor other form of output. You must ensure that text looks right both in the printed manualand in the Info �le.For example, in a printed manual, page breaks may occur awkwardly in the middle ofan example; to prevent this, you can hold text together using a grouping command thatkeeps the text from being split across two pages. Conversely, you may want to force a pagebreak where none would occur normally. Fortunately, problems like these do not often arise.When they do, use the break, break prevention, or pagination commands.
14.1 Break Commands

The break commands create or allow line and paragraph breaks:
@* Force a line break.
@sp n Skip n blank lines.
@- Insert a discretionary hyphen.
@hyphenation{hy-phen-a-ted words }De�ne hyphen points in hy-phen-a-ted words.

These commands hold text together on a single line:
@w{text } Prevent text from being split and hyphenated across two lines.
@tie{} Insert a normal interword space at which a line break may not occur.

The pagination commands apply only to printed output, since Info �les do not havepages.
@page Start a new page in the printed manual.
@group Hold text together that must appear on one printed page.
@need mils Start a new printed page if not enough space on this one.
14.2 @*: Generate Line Breaks

The @* command forces a line break in both the printed manual and in Info.For example,This line @* is broken @*in two places.producesThis lineis brokenin two places.The @* command is often used in a �le's copyright page:

Chapter 14: Making and Preventing Breaks 118

This is edition 2.0 of the Texinfo documentation,@*and is for ...In this case, the @* command keeps TEX from stretching the line across the whole page inan ugly manner.Do not write an @refill command at the end of a paragraph containing an @* com-mand; it will cause the paragraph to be re�lled after the line break occurs, negating thee�ect of the line break.
14.3 @-and @hyphenation: Helping TEX Hyphenate

Although TEX's hyphenation algorithm is generally pretty good, it does miss usefulhyphenation points from time to time. (Or, far more rarely, insert an incorrect hyphenation.)So, for documents with an unusual vocabulary or when �ne-tuning for a printed edition,you may wish to help TEX out. Texinfo supports two commands for this:
@- Insert a discretionary hyphen, i.e., a place where TEX can (but does not haveto) hyphenate. This is especially useful when you notice an overfull hbox is dueto TEX missing a hyphenation (see Section 19.10 [Overfull hboxes], page 154).TEX will not insert any hyphenation points itself into a word containing @-.
@hyphenation{hy-phen-a-ted words }Tell TEX how to hyphenate hy-phen-a-ted words. As shown, you put a `-' ateach hyphenation point. For example:@hyphenation{man-u-script man-u-scripts}TEX only uses the speci�ed hyphenation points when the words match exactly,so give all necessary variants.

Info output is not hyphenated, so these commands have no e�ect there.
14.4 @w{text } : Prevent Line Breaks

@w{text } outputs text and prohibits line breaks within text .You can use the @w command to prevent TEX from automatically hyphenating a longname or phrase that happens to fall near the end of a line. For example:You can copy GNU software from @w{@samp{ftp.gnu.org}}.producesYou can copy GNU software from `ftp.gnu.org'.You can also use @w to produce a non-breakable space, �xed at the width of a normalinterword space:@w{ } @w{ } @w{ } indentation.produces: indentation.The space from @w{ }, as well as being non-breakable, also will not stretch or shrink.Sometimes that is what you want, for instance if you're doing some manual indenting.However, usually you want a normal interword space that does stretch and shrink (in theprinted output); see the @tie command in the next section.

Chapter 14: Making and Preventing Breaks 119

14.5 @tie{} : Inserting an Unbreakable Space
The @tie{} command produces a normal interword space at which a line break maynot occur. Always write it with following (empty) braces, as usual for commands usedwithin a paragraph. Here's an example:
@TeX{} was written by Donald E.@tie{}Knuth.

produces:
TEX was written by Donald E. Knuth.

There are two important di�erences between @tie{} and @w{ }:
The space produced by @tie{} will stretch and shrink slightly along with the normalinterword spaces in the paragraph; the space produced by @w{ } will not vary.
@tie{} allows hyphenation of the surrounding words, while @w{ } inhibits hyphenationof those words (for TEXnical reasons, namely that it produces an `\hbox').

14.6 @spn: Insert Blank Lines
A line beginning with and containing only @sp n generates n blank lines of space inboth the printed manual and the Info �le. @sp also forces a paragraph break. For example,
@sp 2

generates two blank lines.
The @sp command is most often used in the title page.

14.7 @page: Start a New Page
A line containing only @page starts a new page in a printed manual. The commandhas no e�ect on Info �les since they are not paginated. An @page command is often usedin the @titlepage section of a Texinfo �le to start the copyright page.

14.8 @group: Prevent Page Breaks
The @group command (on a line by itself) is used inside an @example or similar con-struct to begin an unsplittable vertical group, which will appear entirely on one page in theprinted output. The group is terminated by a line containing only @end group. These twolines produce no output of their own, and in the Info �le output they have no e�ect at all.
Although @group would make sense conceptually in a wide variety of contexts, itscurrent implementation works reliably only within @example and variants, and within@display, @format, @flushleft and @flushright. See Chapter 10 [Quotations and Ex-amples], page 85. (What all these commands have in common is that each line of inputproduces a line of output.) In other contexts, @group can cause anomalous vertical spacing.This formatting requirement means that you should write:

Chapter 14: Making and Preventing Breaks 120

@example@group...@end group@end examplewith the @group and @end group commands inside the @example and @end example com-mands.The @group command is most often used to hold an example together on one page. Inthis Texinfo manual, more than 100 examples contain text that is enclosed between @groupand @end group.If you forget to end a group, you may get strange and unfathomable error messageswhen you run TEX. This is because TEX keeps trying to put the rest of the Texinfo �leonto the one page and does not start to generate error messages until it has processedconsiderable text. It is a good rule of thumb to look for a missing @end group if you getincomprehensible error messages in TEX.
14.9 @needmils : Prevent Page Breaks

A line containing only @need n starts a new page in a printed manual if fewer than nmils (thousandths of an inch) remain on the current page. Do not use braces around theargument n. The @need command has no e�ect on Info �les since they are not paginated.This paragraph is preceded by an @need command that tells TEX to start a new pageif fewer than 800 mils (eight-tenths inch) remain on the page. It looks like this:
@need 800This paragraph is preceded by ...The @need command is useful for preventing orphans (single lines at the bottoms ofprinted pages).

Chapter 15: De�nition Commands 121

15 De�nition Commands

The @deffn command and the other de�nition commands enable you to describe func-tions, variables, macros, commands, user options, special forms and other such artifacts ina uniform format.In the Info �le, a de�nition causes the entity category|`Function', `Variable', orwhatever|to appear at the beginning of the �rst line of the de�nition, followed by theentity's name and arguments. In the printed manual, the command causes TEX to print theentity's name and its arguments on the left margin and print the category next to the rightmargin. In both output formats, the body of the de�nition is indented. Also, the name ofthe entity is entered into the appropriate index: @deffn enters the name into the index offunctions, @defvr enters it into the index of variables, and so on.A manual need not and should not contain more than one de�nition for a given name.An appendix containing a summary should use @table rather than the de�nition commands.
15.1 The Template for a De�nition

The @deffn command is used for de�nitions of entities that resemble functions. Towrite a de�nition using the @deffn command, write the @deffn command at the beginningof a line and follow it on the same line by the category of the entity, the name of the entityitself, and its arguments (if any). Then write the body of the de�nition on succeeding lines.(You may embed examples in the body.) Finally, end the de�nition with an @end deffncommand written on a line of its own. (The other de�nition commands follow the sameformat.)The template for a de�nition looks like this:
@deffn category name arguments...
body-of-definition@end deffnFor example,
@deffn Command forward-word countThis command moves point forward @var{count} words(or backward if @var{count} is negative). ...@end deffnproduces

[Command]forward-word countThis function moves point forward count words (or backward if count isnegative). . . .
Capitalize the category name like a title. If the name of the category contains spaces,as in the phrase `Interactive Command', write braces around it. For example:
@deffn {Interactive Command} isearch-forward...@end deffnOtherwise, the second word will be mistaken for the name of the entity.

Chapter 15: De�nition Commands 122

Some of the de�nition commands are more general than others. The @deffn command,for example, is the general de�nition command for functions and the like|for entities thatmay take arguments. When you use this command, you specify the category to which theentity belongs. The @deffn command possesses three prede�ned, specialized variations,@defun, @defmac, and @defspec, that specify the category for you: \Function", \Macro",and \Special Form" respectively. (In Lisp, a special form is an entity much like a function.)The @defvr command also is accompanied by several prede�ned, specialized variations fordescribing particular kinds of variables.
The template for a specialized de�nition, such as @defun, is similar to the template fora generalized de�nition, except that you do not need to specify the category:
@defun name arguments...
body-of-definition@end defun

Thus,
@defun buffer-end flagThis function returns @code{(point-min)} if @var{flag}is less than 1, @code{(point-max)} otherwise....@end defun

produces
[Function]bu�er-end
agThis function returns (point-min) if
ag is less than 1, (point-max)otherwise. . . .

See Section 15.6 [A Sample Function De�nition], page 132, for a more detailed example ofa function de�nition, including the use of @example inside the de�nition.
The other specialized commands work like @defun.
Note that, due to implementation di�culties, macros are not expanded in @deffn andall the other de�nition commands.

15.2 Optional and Repeated Arguments
Some entities take optional or repeated arguments, which may be speci�ed by a distinc-tive glyph that uses square brackets and ellipses. For example, a special form often breaksits argument list into separate arguments in more complicated ways than a straightforwardfunction.
An argument enclosed within square brackets is optional. Thus, the phrase `[optional-

arg]' means that optional-arg is optional. An argument followed by an ellipsis is optionaland may be repeated more than once. Thus, `repeated-args ...' stands for zero or morearguments. Parentheses are used when several arguments are grouped into additional levelsof list structure in Lisp.
Here is the @defspec line of an example of an imaginary special form:

Chapter 15: De�nition Commands 123

[Special Form]foobar (var [from to [inc]]) body . . .

In this example, the arguments from and to are optional, but must both be present or bothabsent. If they are present, inc may optionally be speci�ed as well. These arguments aregrouped with the argument var into a list, to distinguish them from body, which includesall remaining elements of the form.
In a Texinfo source �le, this @defspec line is written like this (except it would not besplit over two lines, as it is in this example).
@defspec foobar (@var{var} [@var{from} @var{to}[@var{inc}]]) @var{body}@dots{}

The function is listed in the Command and Variable Index under `foobar'.
15.3 Two or More `First' Lines

To create two or more `�rst' or header lines for a de�nition, follow the �rst @deffnline by a line beginning with @deffnx. The @deffnx command works exactly like @deffnexcept that it does not generate extra vertical white space between it and the precedingline.
For example,
@deffn {Interactive Command} isearch-forward@deffnx {Interactive Command} isearch-backwardThese two search commands are similar except ...@end deffn

produces
[Interactive Command]isearch-forward [Interactive Command]isearch-backwardThese two search commands are similar except . . .

Each de�nition command has an `x' form: @defunx, @defvrx, @deftypefunx, etc.
The `x' forms work just like @itemx; see Section 11.3.3 [@itemx], page 98.

15.4 The De�nition Commands
Texinfo provides more than a dozen de�nition commands, all of which are described inthis section.
The de�nition commands automatically enter the name of the entity in the appropriateindex: for example, @deffn, @defun, and @defmac enter function names in the index offunctions; @defvr and @defvar enter variable names in the index of variables.
Although the examples that follow mostly illustrate Lisp, the commands can be usedfor other programming languages.

Chapter 15: De�nition Commands 124

15.4.1 Functions and Similar Entities

This section describes the commands for describing functions and similar entities:
@deffn category name arguments...The @deffn command is the general de�nition command for functions, interac-tive commands, and similar entities that may take arguments. You must choosea term to describe the category of entity being de�ned; for example, \Function"could be used if the entity is a function. The @deffn command is written at thebeginning of a line and is followed on the same line by the category of entitybeing described, the name of this particular entity, and its arguments, if any.Terminate the de�nition with @end deffn on a line of its own.For example, here is a de�nition:

@deffn Command forward-char ncharsMove point forward @var{nchars} characters.@end deffnThis shows a rather terse de�nition for a \command" named forward-charwith one argument, nchars.
@deffn prints argument names such as nchars in italics or upper case, as if @varhad been used, because we think of these names as metasyntactic variables|they stand for the actual argument values. Within the text of the description,write an argument name explicitly with @var to refer to the value of the argu-ment. In the example above, we used `@var{nchars}' in this way.The template for @deffn is:

@deffn category name arguments...
body-of-definition@end deffn

@defun name arguments...The @defun command is the de�nition command for functions. @defun is equiv-alent to `@deffn Function ...'.For example,
@defun set symbol new-valueChange the value of the symbol @var{symbol}to @var{new-value}.@end defunshows a rather terse de�nition for a function set whose arguments are symboland new-value. The argument names on the @defun line automatically appearin italics or upper case as if they were enclosed in @var. Terminate the de�nitionwith @end defun on a line of its own.The template is:
@defun function-name arguments ...
body-of-definition@end defun@defun creates an entry in the index of functions.

Chapter 15: De�nition Commands 125

@defmac name arguments...The @defmac command is the de�nition command for macros. @defmac isequivalent to `@deffn Macro ...' and works like @defun.
@defspec name arguments...The @defspec command is the de�nition command for special forms. (In Lisp,a special form is an entity much like a function, see section \Special Forms"in GNU Emacs Lisp Reference Manual.) @defspec is equivalent to `@deffn{Special Form} ...' and works like @defun.
15.4.2 Variables and Similar Entities

Here are the commands for de�ning variables and similar entities:
@defvr category nameThe @defvr command is a general de�nition command for something like avariable|an entity that records a value. You must choose a term to describethe category of entity being de�ned; for example, \Variable" could be used ifthe entity is a variable. Write the @defvr command at the beginning of a lineand follow it on the same line by the category of the entity and the name ofthe entity.Capitalize the category name like a title. If the name of the category containsspaces, as in the name \User Option", enclose it in braces. Otherwise, thesecond word will be mistaken for the name of the entity. For example,@defvr {User Option} fill-columnThis buffer-local variable specifiesthe maximum width of filled lines....@end defvrTerminate the de�nition with @end defvr on a line of its own.The template is:@defvr category name

body-of-definition@end defvr@defvr creates an entry in the index of variables for name.
@defvar nameThe @defvar command is the de�nition command for variables. @defvar isequivalent to `@defvr Variable ...'.For example:@defvar kill-ring...@end defvarThe template is:@defvar name

body-of-definition@end defvar

Chapter 15: De�nition Commands 126

@defvar creates an entry in the index of variables for name.
@defopt nameThe @defopt command is the de�nition command for user options, i.e., variablesintended for users to change according to taste; Emacs has many such (seesection \Variables" in The GNU Emacs Manual). @defopt is equivalent to`@defvr {User Option} ...' and works like @defvar.
15.4.3 Functions in Typed Languages

The @deftypefn command and its variations are for describing functions in languagesin which you must declare types of variables and functions, such as C and C++.
@deftypefn category data-type name arguments ...The @deftypefn command is the general de�nition command for functions andsimilar entities that may take arguments and that are typed. The @deftypefncommand is written at the beginning of a line and is followed on the same lineby the category of entity being described, the type of the returned value, thename of this particular entity, and its arguments, if any.For example,

@deftypefn {Library Function} int foobar(int @var{foo}, float @var{bar})...@end deftypefn
(where the text before the \. . . ", shown above as two lines, would actually bea single line in a real Texinfo �le) produces the following in Info:

-- Library Function: int foobar (int FOO, float BAR)
...In a printed manual, it produces:

[Library Function]int foobar (int foo , float bar). . .
This means that foobar is a \library function" that returns an int, and itsarguments are foo (an int) and bar (a float).The argument names that you write in @deftypefn are not subject to an im-plicit @var|since the actual names of the arguments in @deftypefn are typi-cally scattered among data type names and keywords, Texinfo cannot �nd themwithout help. Instead, you must write @var explicitly around the argumentnames. In the example above, the argument names are `foo' and `bar'.The template for @deftypefn is:

@deftypefn category data-type name arguments ...
body-of-description@end deftypefnNote that if the category or data type is more than one word then it must beenclosed in braces to make it a single argument.

Chapter 15: De�nition Commands 127

If you are describing a procedure in a language that has packages, such as Ada,you might consider using @deftypefn in a manner somewhat contrary to theconvention described in the preceding paragraphs.For example:
@deftypefn stacks private push(@var{s}:in out stack;@var{n}:in integer)...@end deftypefn(The @deftypefn arguments are shown split into three lines, but would be asingle line in a real Texinfo �le.)In this instance, the procedure is classi�ed as belonging to the package stacksrather than classi�ed as a `procedure' and its data type is described as private.(The name of the procedure is push, and its arguments are s and n.)

@deftypefn creates an entry in the index of functions for name.
@deftypefun data-type name arguments ...The @deftypefun command is the specialized de�nition command for functionsin typed languages. The command is equivalent to `@deftypefn Function ...'.Thus,

@deftypefun int foobar (int @var{foo}, float @var{bar})
...
@end deftypefunproduces the following in Info:
-- Function: int foobar (int FOO, float BAR)...and the following in a printed manual:

[Function]int foobar (int foo , float bar). . .
The template is:

@deftypefun type name arguments...
body-of-description@end deftypefun@deftypefun creates an entry in the index of functions for name.

15.4.4 Variables in Typed Languages

Variables in typed languages are handled in a manner similar to functions in typedlanguages. See Section 15.4.3 [Typed Functions], page 126. The general de�nition com-mand @deftypevr corresponds to @deftypefn and the specialized de�nition command@deftypevar corresponds to @deftypefun.
@deftypevr category data-type nameThe @deftypevr command is the general de�nition command for somethinglike a variable in a typed language|an entity that records a value. You must

Chapter 15: De�nition Commands 128

choose a term to describe the category of the entity being de�ned; for example,\Variable" could be used if the entity is a variable.
The @deftypevr command is written at the beginning of a line and is followedon the same line by the category of the entity being described, the data type,and the name of this particular entity.For example:

@deftypevr {Global Flag} int enable...@end deftypevrproduces the following in Info:
-- Global Flag: int enable...and the following in a printed manual:

[Global Flag]int enable. . .
The template is:

@deftypevr category data-type name
body-of-description@end deftypevr

@deftypevr creates an entry in the index of variables for name.
@deftypevar data-type nameThe @deftypevar command is the specialized de�nition command for variablesin typed languages. @deftypevar is equivalent to `@deftypevr Variable ...'.For example:

@deftypevar int fubar...@end deftypevarproduces the following in Info:
-- Variable: int fubar...

and the following in a printed manual:
[Variable]int fubar. . .

The template is:
@deftypevar data-type name
body-of-description@end deftypevar

@deftypevar creates an entry in the index of variables for name.

Chapter 15: De�nition Commands 129

15.4.5 Object-Oriented Programming

Here are the commands for formatting descriptions about abstract objects, such asare used in object-oriented programming. A class is a de�ned type of abstract object. Aninstance of a class is a particular object that has the type of the class. An instance variableis a variable that belongs to the class but for which each instance has its own value.
In a de�nition, if the name of a class is truly a name de�ned in the programming systemfor a class, then you should write an @code around it. Otherwise, it is printed in the usualtext font.

@defcv category class nameThe @defcv command is the general de�nition command for variables associatedwith classes in object-oriented programming. The @defcv command is followedby three arguments: the category of thing being de�ned, the class to which itbelongs, and its name. Thus,
@defcv {Class Option} Window border-pattern...@end defcvillustrates how you would write the �rst line of a de�nition of the border-pattern class option of the class Window.The template is:
@defcv category class name...@end defcv

@defcv creates an entry in the index of variables.
@defivar class nameThe @defivar command is the de�nition command for instance variables inobject-oriented programming. @defivar is equivalent to `@defcv {InstanceVariable} ...'The template is:

@defivar class instance-variable-name
body-of-definition@end defivar

@defivar creates an entry in the index of variables.
@deftypeivar class data-type nameThe @deftypeivar command is the de�nition command for typed instancevariables in object-oriented programming. It is similar to @defivar with theaddition of the data-type parameter to specify the type of the instance variable.@deftypeivar creates an entry in the index of variables.
@defop category class name arguments ...The @defop command is the general de�nition command for entities that mayresemble methods in object-oriented programming. These entities take argu-ments, as functions do, but are associated with particular classes of objects.

Chapter 15: De�nition Commands 130

For example, some systems have constructs called wrappers that are associatedwith classes as methods are, but that act more like macros than like functions.You could use @defop Wrapper to describe one of these.Sometimes it is useful to distinguish methods and operations. You can think ofan operation as the speci�cation for a method. Thus, a window system mightspecify that all window classes have a method named expose; we would saythat this window system de�nes an expose operation on windows in general.Typically, the operation has a name and also speci�es the pattern of arguments;all methods that implement the operation must accept the same arguments,since applications that use the operation do so without knowing which methodwill implement it.Often it makes more sense to document operations than methods. For example,window application developers need to know about the expose operation, butneed not be concerned with whether a given class of windows has its own methodto implement this operation. To describe this operation, you would write:
@defop Operation windows exposeThe @defop command is written at the beginning of a line and is followed onthe same line by the overall name of the category of operation, the name of theclass of the operation, the name of the operation, and its arguments, if any.The template is:
@defop category class name arguments ...
body-of-definition@end defop

@defop creates an entry, such as `expose on windows', in the index of functions.
@deftypeop category class data-type name arguments ...The @deftypeop command is the de�nition command for typed operations inobject-oriented programming. It is similar to @defop with the addition of the

data-type parameter to specify the return type of the method. @deftypeopcreates an entry in the index of functions.
@defmethod class name arguments...The @defmethod command is the de�nition command for methods in object-oriented programming. A method is a kind of function that implements anoperation for a particular class of objects and its subclasses.

@defmethod is equivalent to `@defop Method ...'. The command is written atthe beginning of a line and is followed by the name of the class of the method,the name of the method, and its arguments, if any.For example:
@defmethod bar-class bar-method argument...@end defmethodillustrates the de�nition for a method called bar-method of the class bar-class.The method takes an argument.The template is:

Chapter 15: De�nition Commands 131

@defmethod class method-name arguments...
body-of-definition@end defmethod

@defmethod creates an entry, such as `bar-method on bar-class', in the indexof functions.
@deftypemethod class data-type name arguments ...The @deftypemethod command is the de�nition command for methods inobject-oriented typed languages, such as C++ and Java. It is similar to the@defmethod command with the addition of the data-type parameter to specifythe return type of the method.
15.4.6 Data Types

Here is the command for data types:
@deftp category name attributes ...The @deftp command is the generic de�nition command for data types. Thecommand is written at the beginning of a line and is followed on the same lineby the category, by the name of the type (which is a word like int or float),and then by names of attributes of objects of that type. Thus, you could usethis command for describing int or float, in which case you could use datatype as the category. (A data type is a category of certain objects for purposesof deciding which operations can be performed on them.)

In Lisp, for example, pair names a particular data type, and an object of thattype has two slots called the car and the cdr . Here is how you would writethe �rst line of a de�nition of pair.
@deftp {Data type} pair car cdr...@end deftp

The template is:
@deftp category name-of-type attributes ...
body-of-definition@end deftp

@deftp creates an entry in the index of data types.
15.5 Conventions for Writing De�nitions

When you write a de�nition using @deffn, @defun, or one of the other de�nitioncommands, please take care to use arguments that indicate the meaning, as with the countargument to the forward-word function. Also, if the name of an argument contains thename of a type, such as integer, take care that the argument actually is of that type.

Chapter 15: De�nition Commands 132

15.6 A Sample Function De�nition
A function de�nition uses the @defun and @end defun commands. The name of thefunction follows immediately after the @defun command and it is followed, on the sameline, by the parameter list.
Here is a de�nition from section \Calling Functions" in The GNU Emacs Lisp Reference

Manual.
[Function]apply function &rest argumentsapply calls function with arguments, just like funcall but with one dif-ference: the last of arguments is a list of arguments to give to function,rather than a single argument. We also say that this list is appendedtothe other arguments.

apply returns the result of calling function. As with funcall, functionmust either be a Lisp function or a primitive function; special forms andmacros do not make sense in apply.
(setq f 'list)) list(apply f 'x 'y 'z)error Wrong type argument: listp, z(apply '+ 1 2 '(3 4))) 10(apply '+ '(1 2 3 4))) 10
(apply 'append '((a b c) nil (x y z) nil))) (a b c x y z)

An interesting example of using apply is found in the description ofmapcar.
In the Texinfo source �le, this example looks like this:
@defun apply function &rest arguments@code{apply} calls @var{function} with@var{arguments}, just like @code{funcall} but with onedifference: the last of @var{arguments} is a list ofarguments to give to @var{function}, rather than a singleargument. We also say that this list is @dfn{appended}to the other arguments.
@code{apply} returns the result of calling@var{function}. As with @code{funcall},@var{function} must either be a Lisp function or aprimitive function; special forms and macros do not makesense in @code{apply}.

Chapter 15: De�nition Commands 133

@example(setq f 'list)@result{} list(apply f 'x 'y 'z)@error{} Wrong type argument: listp, z(apply '+ 1 2 '(3 4))@result{} 10(apply '+ '(1 2 3 4))@result{} 10
(apply 'append '((a b c) nil (x y z) nil))@result{} (a b c x y z)@end example
An interesting example of using @code{apply} is foundin the description of @code{mapcar}.@end defunIn this manual, this function is listed in the Command and Variable Index under apply.Ordinary variables and user options are described using a format like that for functionsexcept that variables do not take arguments.

Chapter 16: Conditionally Visible Text 134

16 Conditionally Visible Text
Sometimes it is good to use di�erent text for di�erent output formats. For example,you can use the conditional commands to specify di�erent text for the printed manual andthe Info output.Conditional commands may not be nested.The conditional commands comprise the following categories.� Commands for HTML, Info, or TEX.� Commands for not HTML, Info, or TEX.� Raw TEX or HTML commands.� Substituting text for all formats, and testing if a
ag is set or clear.

16.1 Conditional Commands
Texinfo has an @if... environment for each output format, to allow conditional inclu-sion of text for a particular output format.@ifinfo begins segments of text that should be ignored by TEX when it typesetsthe printed manual. The segment of text appears only in the Info �le and (for historicalcompatibility) the plain text output. The @ifinfo command should appear on a line byitself; end the Info-only text with a line containing @end ifinfo by itself.The @iftex and @end iftex commands are analogous to the @ifinfo and @end ifinfocommands; they specify text that will appear in the printed manual but not in the Info�le. Likewise for @ifhtml and @end ifhtml, which specify text to appear only in HTMLoutput. And for @ifplaintext and @end ifplaintext, which specify text to appear onlyin plain text output. And for @ifxml and @end ifxml, for the XML output.For example,@iftexThis text will appear only in the printed manual.@end iftex@ifinfoHowever, this text will appear only in Info (or plain text).@end ifinfo@ifhtmlAnd this text will only appear in HTML.@end ifhtml@ifplaintextWhereas this text will only appear in plain text.@end ifplaintext@ifxmlAnd this will only appear in XML output.@end ifxmlThe preceding example produces the following line: This text will appear only in the printedmanual.Notice that you only see one of the input lines, depending on which version of the manualyou are reading.

Chapter 16: Conditionally Visible Text 135

16.2 Conditional Not Commands
You can specify text to be included in any output format other than some given onewith the @ifnot... commands:
@ifnothtml ... @end ifnothtml@ifnotinfo ... @end ifnotinfo@ifnotplaintext ... @end ifnotplaintext@ifnottex ... @end ifnottex@ifnotxml ... @end ifnotxmlThe @ifnot... command and the @end command must appear on lines by themselves inyour actual source �le.If the output �le is being made in the given format, the region is ignored. Otherwise,it is included.With one exception (for historical compatibility): @ifnotinfo text is omitted for bothInfo and plain text output, not just Info. To specify text which appears only in Info andnot in plain text, use @ifnotplaintext, like this:
@ifinfo@ifnotplaintextThis will be in Info, but not plain text.@end ifnotplaintext@end ifinfoThe regions delimited by these commands are ordinary Texinfo source as with @iftex,not raw formatter source as with @tex (see Section 16.3 [Raw Formatter Commands],page 135).

16.3 Raw Formatter Commands
Inside a region delineated by @iftex and @end iftex, you can embed some raw TEXcommands. Info will ignore these commands since they are only in that part of the �le whichis seen by TEX. You can write the TEX commands as you would write them in a normalTEX �le, except that you must replace the `\' used by TEX with an `@'. For example, in the@titlepage section of a Texinfo �le, you can use the TEX command @vskip to format thecopyright page. (The @titlepage command causes Info to ignore the region automatically,as it does with the @iftex command.)However, many features of plain TEX will not work, as they are overridden by Texinfofeatures.You can enter plain TEX completely, and use `\' in the TEX commands, by delineatinga region with the @tex and @end tex commands. (The @tex command also causes Info toignore the region, like the @iftex command.) The sole exception is that the @ characterstill introduces a command, so that @end tex can be recognized properly.For example, here is a mathematical expression written in plain TEX:
@tex$$ \chi^2 = \sum_{i=1}^N\left (y_i - (a + b x_i)

Chapter 16: Conditionally Visible Text 136

\over \sigma_i\right)^2 $$@end tex
The output of this example will appear only in a printed manual. If you are reading this inInfo, you will not see the equation that appears in the printed manual. In a printed manual,the above expression looks like this:

�2 = NX
i=1
�yi � (a + bxi)�i

�2

Analogously, you can use @ifhtml ... @end ifhtml to delimit a region to be includedin HTML output only, and @html ... @end html for a region of raw HTML (again, exceptthat @ is still the escape character, so the @end command can be recognized.)
Analogously, you can use @ifxml ... @end ifxml to delimit a region to be included inXML output only, and @xml ... @end xml for a region of raw XML (again, except that @is still the escape character, so the @end command can be recognized.)

16.4 @set, @clear, and @value

You can direct the Texinfo formatting commands to format or ignore parts of a Texinfo�le with the @set, @clear, @ifset, and @ifclear commands.
Brief descriptions:

@set flag [value]Set the variable
ag , to the optional value if specifed.
@clear flag Unde�ne the variable
ag , whether or not it was previously de�ned.
@ifset flag If
ag is set, text through the next @end ifset command is formatted. If
agis clear, text through the following @end ifset command is ignored.
@ifclear flagIf
ag is set, text through the next @end ifclear command is ignored. If
agis clear, text through the following @end ifclear command is formatted.
16.4.1 @setand @value

You use the @set command to specify a value for a
ag, which is later expanded bythe @value command.
A
ag is an identi�er. In general, it is best to use only letters and numerals in a
agname, not `-' or `_'|they will work in some contexts, but not all, due to limitations inTEX.
The value is the remainder of the input line, and can contain anything.
Write the @set command like this:

Chapter 16: Conditionally Visible Text 137

@set foo This is a string.This sets the value of the
ag foo to \This is a string.".The Texinfo formatters then replace an @value{flag } command with the string towhich
ag is set. Thus, when foo is set as shown above, the Texinfo formatters convertthis:
@value{foo}to this:This is a string.You can write an @value command within a paragraph; but you must write an @setcommand on a line of its own.If you write the @set command like this:
@set foowithout specifying a string, the value of foo is the empty string.If you clear a previously set
ag with @clear flag , a subsequent @value{flag} com-mand will report an error.For example, if you set foo as follows:
@set how-much very, very, verythen the formatters transform
It is a @value{how-much} wet day.into It is a very, very, very wet day.If you write
@clear how-muchthen the formatters transform
It is a @value{how-much} wet day.into It is a {No value for "how-much"} wet day.

16.4.2 @ifset and @ifclear

When a
ag is set, the Texinfo formatting commands format text between subsequentpairs of @ifset flag and @end ifset commands. When the
ag is cleared, the Texinfoformatting commands do not format the text. @ifclear operates analogously.Write the conditionally formatted text between @ifset flag and @end ifset com-mands, like this:
@ifset flag
conditional-text@end ifsetFor example, you can create one document that has two variants, such as a manual fora `large' and `small' model:
You can use this machine to dig up shrubswithout hurting them.
@set large

Chapter 16: Conditionally Visible Text 138

@ifset largeIt can also dig up fully grown trees.@end ifset
Remember to replant promptly ...

In the example, the formatting commands will format the text between @ifset large and@end ifset because the large
ag is set.
When
ag is cleared, the Texinfo formatting commands do not format the text between@ifset flag and @end ifset; that text is ignored and does not appear in either printedor Info output.
For example, if you clear the
ag of the preceding example by writing an @clearlarge command after the @set large command (but before the conditional text), then theTexinfo formatting commands ignore the text between the @ifset large and @end ifsetcommands. In the formatted output, that text does not appear; in both printed and Infooutput, you see only the lines that say, \You can use this machine to dig up shrubs withouthurting them. Remember to replant promptly . . . ".
If a
ag is cleared with an @clear flag command, then the formatting commandsformat text between subsequent pairs of @ifclear and @end ifclear commands. But ifthe
ag is set with @set flag , then the formatting commands do not format text betweenan @ifclear and an @end ifclear command; rather, they ignore that text. An @ifclearcommand looks like this:
@ifclear flag

16.4.3 @valueExample

You can use the @value command to minimize the number of places you need to changewhen you record an update to a manual. See Section C.2 [GNU Sample Texts], page 197,for an example of this same principle can work with Automake distributions, and full texts.
Here is an example adapted from section \Overview" in The GNU Make Manual):

1. Set the
ags:
@set EDITION 0.35 Beta@set VERSION 3.63 Beta@set UPDATED 14 August 1992@set UPDATE-MONTH August 1992

2. Write text for the @copying section (see Section 3.3.1 [copying], page 33):

Chapter 16: Conditionally Visible Text 139

@copyingThis is Edition @value{EDITION},last updated @value{UPDATED},of @cite{The GNU Make Manual},for @code{make}, version @value{VERSION}.
Copyright ...
Permission is granted ...@end copying3. Write text for the title page, for people reading the printed manual:
@titlepage@title GNU Make@subtitle A Program for Directing Recompilation@subtitle Edition @value{EDITION}, ...@subtitle @value{UPDATE-MONTH}@page@insertcopying...@end titlepage(On a printed cover, a date listing the month and the year looks less fussy than a datelisting the day as well as the month and year.)4. Write text for the Top node, for people reading the Info �le:
@ifnottex@node Top@top Make
@insertcopying...@end ifnottexAfter you format the manual, the @value constructs have been expanded, so the outputcontains text like this:
This is Edition 0.35 Beta, last updated 14 August 1992,of `The GNU Make Manual', for `make', Version 3.63 Beta.

When you update the manual, you change only the values of the
ags; you do not needto edit the three sections.

Chapter 17: Internationalization 140

17 Internationalization

Texinfo has some support for writing in languages other than English, although thisarea still needs considerable work.For a list of the various accented and special characters Texinfo supports, see Sec-tion 13.3 [Inserting Accents], page 107.
17.1 @documentlanguagecc : Set the Document Language

The @documentlanguage command declares the current document language. Write iton a line by itself, with a two-letter ISO-639 language code following (list is included below).If you have a multilingual document, the intent is to be able to use this command multipletimes, to declare each language change. If the command is not used at all, the default is enfor English.At present, this command is ignored in Info and HTML output. For TEX, it causesthe �le `txi-cc.tex' to be read (if it exists). Such a �le appropriately rede�nes the variousEnglish words used in TEX output, such as `Chapter', `See', and so on.It would be good if this command also changed TEX's ideas of the current hyphen-ation patterns (via the TEX primitive \language), but this is unfortunately not currentlyimplemented.Hereare the valid language codes, from ISO-639.
aa Afar ab Abkhazian af Afrikaansam Amharic ar Arabic as Assameseay Aymara az Azerbaijani ba Bashkirbe Byelorussian bg Bulgarian bh Biharibi Bislama bn Bengali; Bangla bo Tibetanbr Breton ca Catalan co Corsicancs Czech cy Welsh da Danishde German dz Bhutani el Greeken English eo Esperanto es Spanishet Estonian eu Basque fa Persianfi Finnish fj Fiji fo Faroesefr French fy Frisian ga Irishgd Scots Gaelic gl Galician gn Guaranigu Gujarati ha Hausa he Hebrewhi Hindi hr Croatian hu Hungarianhy Armenian ia Interlingua id Indonesianie Interlingue ik Inupiak is Icelandicit Italian iu Inuktitut ja Japanesejw Javanese ka Georgian kk Kazakhkl Greenlandic km Cambodian kn Kannadaks Kashmiri ko Korean ku Kurdishky Kirghiz la Latin ln Lingalalt Lithuanian lo Laothian lv Latvian, Lettishmg Malagasy mi Maori mk Macedonian

Chapter 17: Internationalization 141

ml Malayalam mn Mongolian mo Moldavianmr Marathi ms Malay mt Maltesemy Burmese na Nauru ne Nepalinl Dutch no Norwegian oc Occitanom (Afan) Oromo or Oriya pa Punjabipl Polish ps Pashto, Pushto pt Portuguesequ Quechua rm Rhaeto-Romance rn Kirundiro Romanian ru Russian rw Kinyarwandasa Sanskrit sd Sindhi sg Sangrosh Serbo-Croatian si Sinhalese sk Slovaksl Slovenian sm Samoan sn Shonaso Somali sq Albanian sr Serbianss Siswati st Sesotho su Sundanesesv Swedish sw Swahili ta Tamilte Telugu tg Tajik th Thaiti Tigrinya tk Turkmen tl Tagalogtn Setswana to Tonga tr Turkishts Tsonga tt Tatar tw Twiug Uighur uk Ukrainian ur Urduuz Uzbek vi Vietnamese vo Volapukwo Wolof xh Xhosa yi Yiddishyo Yoruba za Zhuang zh Chinesezu Zulu
17.2 @documentencodingenc: Set Input Encoding

The @documentencoding command declares the input document encoding. Write it ona line by itself, with a valid encoding speci�cation following, such as `ISO-8859-1'.At present, this is used only in HTML output from makeinfo. If a document encoding
enc is speci�ed, it is used in a `<meta>' tag included in the `<head>' of the output:

<meta http-equiv="Content-Type" content="text/html;charset=enc">

Chapter 18: De�ning New Texinfo Commands 142

18 De�ning New Texinfo Commands

Texinfo provides several ways to de�ne new commands:
� A Texinfo macro allows you to de�ne a new Texinfo command as any sequence of textand/or existing commands (including other macros). The macro can have any numberof parameters|text you supply each time you use the macro.Incidentally, these macros have nothing to do with the @defmac command, which is fordocumenting macros in the subject of the manual (see Section 15.1 [Def Cmd Template],page 121).
� `@alias' is a convenient way to de�ne a new name for an existing command.
� `@definfoenclose' allows you to de�ne new commands with customized output in theInfo �le.

18.1 De�ning Macros
You use the Texinfo @macro command to de�ne a macro, like this:
@macro macroname{param1, param2, ...}
text ... \param1\ ...@end macroThe parameters param1, param2, . . . correspond to arguments supplied when themacro is subsequently used in the document (described in the next section).For a macro to work with TEX, macronamemust consist entirely of letters: no digits,hyphens, underscores, or other special characters.If a macro needs no parameters, you can de�ne it either with an empty list (`@macrofoo {}') or with no braces at all (`@macro foo').The de�nition or body of the macro can contain most Texinfo commands, includingpreviously-de�ned macros. Not-yet-de�ned macro invocations are not allowed; thus, it is notpossible to have mutually recursive Texinfo macros. Also, a macro de�nition that de�nesanother macro does not work in TEX due to limitations in the design of @macro.In the macro body, instances of a parameter name surrounded by backslashes, as in`\param1\' in the example above, are replaced by the corresponding argument from themacro invocation. You can use parameter names any number of times in the body, includingzero.To get a single `\' in the macro expansion, use `\\'. Any other use of `\' in the bodyyields a warning.The newlines after the @macro line and before the @end macro line are ignored, thatis, not included in the macro body. All other whitespace is treated according to the usualTexinfo rules.To allow a macro to be used recursively, that is, in an argument to a call to itself, youmust de�ne it with `@rmacro', like this:
@rmacro rmac {arg}a\arg\b@end rmacro

Chapter 18: De�ning New Texinfo Commands 143

...@rmac{1@rmac{text}2}This produces the output `a1atextb2b'. With `@macro' instead of `@rmacro', an errormessage is given.You can unde�ne a macro foo with @unmacro foo . It is not an error to unde�ne amacro that is already unde�ned. For example:
@unmacro foo

18.2 Invoking Macros
After a macro is de�ned (see the previous section), you can use (invoke) it in yourdocument like this:
@macroname{arg1, arg2, ...}and the result will be just as if you typed the body of macronameat that spot. For example:
@macro foo {p, q}Together: \p\ & \q\.@end macro@foo{a, b}produces:Together: a & b.Thus, the arguments and parameters are separated by commas and delimited by braces;any whitespace after (but not before) a comma is ignored. The braces are required in theinvocation (but not the de�nition), even when the macro takes no arguments, consistentwith all other Texinfo commands. For example:
@macro argless {}No arguments here.@end macro@argless{}produces:No arguments here.To insert a comma, brace, or backslash in an argument, prepend a backslash, as in
@macname{\\\{\}\,}which will pass the (almost certainly error-producing) argument `\{},' to macname. How-ever, commas in parameters, even if escaped by a backslash, might cause trouble in TEX.If the macro is de�ned to take a single argument, and is invoked without any braces,the entire rest of the line after the macro name is supplied as the argument. For example:
@macro bar {p}Twice: \p\ & \p\.@end macro@bar aahproduces:

Chapter 18: De�ning New Texinfo Commands 144

Twice: aah & aah.
If the macro is de�ned to take a single argument, and is invoked with braces, the bracedtext is passed as the argument, regardless of commas. For example:
@macro bar {p}Twice: \p\ & \p\.@end macro@bar{a,b}

produces:
Twice: a,b & a,b.

18.3 Macro Details
Due to unavoidable limitations, certain macro-related constructs cause problems withTEX. If you get macro-related errors when producing the printed version of a manual, try ex-panding the macros with makeinfo by invoking texi2dvi with the `-E' option (Section 19.3[Format with texi2dvi], page 149).

� All macros are expanded inside at least one TEX group. This means that @set andother such commands have no e�ect inside a macro.
� Macros containing a command which must be on a line by itself, such as a conditional,cannot be invoked in the middle of a line.
� Commas in macro arguments, even if escaped by a backslash, don't always work.
� It is best to avoid comments inside macro de�nitions.
� Macro arguments cannot cross lines.
� Macros cannot de�ne macros in the natural way. To do this, you must use conditionalsand raw TEX. For example:

@ifnottex@macro ctor {name, arg}@macro \name\something involving \arg\ somehow@end macro@end macro@end ifnottex@tex\gdef\ctor#1{\ctorx#1,}\gdef\ctorx#1,#2,{\def#1{something involving #2 somehow}}@end tex
18.4 `@alias new=existing '

The `@alias' command de�nes a new command to be just like an existing one. This isuseful for de�ning additional markup names, thus preserving semantic information in theinput even though the output result may be the same.

Chapter 18: De�ning New Texinfo Commands 145

Write the `@alias' command on a line by itself, followed by the new command name,an equals sign, and the existing command name. Whitespace around the equals sign isignored. Thus:
@alias new = existing

For example, if your document contains citations for both books and some other media(movies, for example), you might like to de�ne a macro @moviecite{} that does the samething as an ordinary @cite{} but conveys the extra semantic information as well. You'ddo this as follows:
@alias moviecite = cite

Macros do not always have the same e�ect due to vagaries of argument parsing. Also,aliases are much simpler to de�ne than macros. So the command is not redundant. (It wasalso heavily used in the Jargon File!)
Aliases must not be recursive, directly or indirectly.

18.5 `definfoenclose ': Customized Highlighting
A @definfoenclose command may be used to de�ne a highlighting command for Info,but not for TEX. A command de�ned using @definfoenclose marks text by enclosing it instrings that precede and follow the text. You can use this to get closer control of your Infooutput.
Presumably, if you de�ne a command with @definfoenclose for Info, you will createa corresponding command for TEX, either in `texinfo.tex', `texinfo.cnf', or within an`@iftex' in your document.
Write a @definfoenclose command on a line and follow it with three argumentsseparated by commas. The �rst argument to @definfoenclose is the @-command name(without the @); the second argument is the Info start delimiter string; and the thirdargument is the Info end delimiter string. The latter two arguments enclose the highlightedtext in the Info �le. A delimiter string may contain spaces. Neither the start nor enddelimiter is required. If you do not want a start delimiter but do want an end delimiter, youmust follow the command name with two commas in a row; otherwise, the Info formattingcommands will naturally misinterpret the end delimiter string you intended as the startdelimiter string.
If you do a @definfoenclose on the name of a pre-de�ned macro (such as @emph,@strong, @t, or @i), the enclosure de�nition will override the built-in de�nition.
An enclosure command de�ned this way takes one argument in braces; this is intendedfor new markup commands (see Chapter 9 [Marking Text], page 75).
For example, you can write:
@definfoenclose phoo,//,\\

near the beginning of a Texinfo �le to de�ne @phoo as an Info formatting command thatinserts `//' before and `\\' after the argument to @phoo. You can then write @phoo{bar}wherever you want `//bar\\' highlighted in Info.
Also, for TEX formatting, you could write

Chapter 18: De�ning New Texinfo Commands 146

@iftex@global@let@phoo=@i@end iftexto de�ne @phoo as a command that causes TEX to typeset the argument to @phoo in italics.Each de�nition applies to its own formatter: one for TEX, the other for texinfo-format-buffer or texinfo-format-region. The @definfoenclose command need notbe within `@ifinfo', but the raw TEX commands do need to be in `@iftex'.Here is another example: write
@definfoenclose headword, , :near the beginning of the �le, to de�ne @headword as an Info formatting command thatinserts nothing before and a colon after the argument to @headword.`@definfoenclose' de�nitions must not be recursive, directly or indirectly.

Chapter 19: Formatting and Printing Hardcopy 147

19 Formatting and Printing Hardcopy

There are three major shell commands for making a printed manual from a Texinfo �le:one for converting the Texinfo �le into a �le that will be printed, a second for sorting indices,and a third for printing the formatted document. When you use the shell commands, youcan either work directly in the operating system shell or work within a shell inside GNUEmacs.
If you are using GNU Emacs, you can use commands provided by Texinfo mode insteadof shell commands. In addition to the three commands to format a �le, sort the indices,and print the result, Texinfo mode o�ers key bindings for commands to recenter the outputbu�er, show the print queue, and delete a job from the print queue.

19.1 Use TEX
The typesetting program called TEX is used for formatting a Texinfo �le. TEX is a verypowerful typesetting program and, if used correctly, does an exceptionally good job. (SeeAppendix I [How to Obtain TEX], page 220, for information on how to obtain TEX.)
The standalone makeinfo program and Emacs functions texinfo-format-region andtexinfo-format-buffer commands read the very same @-commands in the Texinfo �le asdoes TEX, but process them di�erently to make an Info �le (see Section 20.1 [Creating anInfo File], page 158).

19.2 Format with tex and texindex

Format the Texinfo �le with the shell command tex followed by the name of the Texinfo�le. For example:
tex foo.texi

TEX will produce a DVI �le as well as several auxiliary �les containing information forindices, cross references, etc. The DVI �le (for DeVice Independent�le) can be printed onvirtually any device (see the following sections).
The tex formatting command itself does not sort the indices; it writes an output �leof unsorted index data. (The texi2dvi command automatically generates indices; seeSection 19.3 [Format with texi2dvi], page 149.) To generate a printed index after runningthe tex command, you �rst need a sorted index to work from. The texindex command sortsindices. (The source �le `texindex.c' comes as part of the standard Texinfo distribution,among other places.)
The tex formatting command outputs unsorted index �les under names that obey astandard convention: the name of your main input �le with any `.tex' (or similar, seesection \tex invocation" in Web2c) extension removed, followed by the two letter namesof indices. For example, the raw index output �les for the input �le `foo.texinfo' wouldbe `foo.cp', `foo.vr', `foo.fn', `foo.tp', `foo.pg' and `foo.ky'. Those are exactly thearguments to give to texindex.

Chapter 19: Formatting and Printing Hardcopy 148

Instead of specifying all the unsorted index �le names explicitly, you can use `??' asshell wildcards and give the command in this form:
texindex foo.??This command will run texindex on all the unsorted index �les, including any that youhave de�ned yourself using @defindex or @defcodeindex. (You may execute `texindexfoo.??' even if there are similarly named �les with two letter extensions that are not index�les, such as `foo.el'. The texindex command reports but otherwise ignores such �les.)For each �le speci�ed, texindex generates a sorted index �le whose name is made byappending `s' to the input �le name. The @printindex command looks for a �le with thatname (see Section 4.1 [Printing Indices & Menus], page 45). texindex does not alter theraw index output �le.After you have sorted the indices, you need to rerun the tex formatting command onthe Texinfo �le. This regenerates the DVI �le, this time with up-to-date index entries.Finally, you may need to run tex one more time, to get the page numbers in thecross-references correct.To summarize, this is a �ve step process:1. Run tex on your Texinfo �le. This generates a DVI �le (with unde�ned cross-referencesand no indices), and the raw index �les (with two letter extensions).2. Run texindex on the raw index �les. This creates the corresponding sorted index �les(with three letter extensions).3. Run tex again on your Texinfo �le. This regenerates the DVI �le, this time with indicesand de�ned cross-references, but with page numbers for the cross-references from lasttime, generally incorrect.4. Sort the indices again, with texindex.5. Run tex one last time. This time the correct page numbers are written for the cross-references.

Alternatively, it's a one-step process: run texi2dvi (see Section 19.3 [Format withtexi2dvi], page 149).You need not run texindex each time after you run tex. If you do not, on the nextrun, the tex formatting command will use whatever sorted index �les happen to exist fromthe previous use of texindex. This is usually ok while you are debugging.Sometimes you may wish to print a document while you know it is incomplete, orto print just one chapter of a document. In that case, the usual auxiliary �les that TEXcreates and warnings TEX gives when cross-references are not satis�ed are just nuisances.You can avoid them with the @novalidate command, which you must give before the@setfilename command (see Section 3.2.3 [@setfilename], page 31). Thus, the beginningof your �le would look approximately like this:
\input texinfo@novalidate@setfilename myfile.info...

@novalidate also turns o� validation in makeinfo, just like its --no-validate option (seeSection 20.1.4 [Pointer Validation], page 162).

Chapter 19: Formatting and Printing Hardcopy 149

19.3 Format with texi2dvi

The texi2dvi command automatically runs both tex and texindex as many timesas necessary to produce a DVI �le with sorted indices and all cross-references resolved. Itsimpli�es the tex|texindex|tex|tex sequence described in the previous section.To run texi2dvi on an input �le `foo.texi', do this (where `prompt$ ' is your shellprompt):prompt$ texi2dvi foo.texiAs shown in this example, the input �lenames to texi2dvi must include any extension(`.texi', `.texinfo', etc.). Under MS-DOS and perhaps in other circumstances, you mayneed to run `sh texi2dvi foo.texi' instead of relying on the operating system to invokethe shell on the `texi2dvi' script.Perhaps the most useful option to texi2dvi is `--texinfo=cmd'. This inserts cmdon a line by itself after the @setfilename in a temporary copy of the input �le beforerunning TEX. With this, you can specify di�erent printing formats, such as @smallbook (seeSection 19.11 [smallbook], page 155), @afourpaper (see Section 19.12 [A4 Paper], page 155),or @pagesizes (see Section 19.13 [pagesizes], page 156), without actually changing thedocument source. (You can also do this on a site-wide basis with `texinfo.cnf'; seeSection 19.9 [Preparing for TEX], page 153).For a list of other options, run `texi2dvi --help'.
19.4 Shell Print Using lpr -d

The precise command to print a DVI �le depends on your system installation. Twocommon ones are `dvips foo.dvi -o' and `lpr -d foo.dvi'.For example, the following commands will (perhaps) su�ce to sort the indices, format,and print the Bison Manual:tex bison.texinfotexindex bison.??tex bison.texinfolpr -d bison.dvi(Remember that the shell commands may be di�erent at your site; but these are commonlyused versions.)Using the texi2dvi shell script (see the previous section):texi2dvi bison.texinfolpr -d bison.dvi# or perhaps dvips bison.dvi -olpr is a standard program on Unix systems, but it is usually absent on MS-DOS/MS-Windows. Some network packages come with a program named lpr, but these are usuallylimited to sending �les to a print server over the network, and generally don't support the`-d' option. If you are unfortunate enough to work on one of these systems, you have severalalternative ways of printing DVI �les:� Find and install a Unix-like lpr program, or its clone. If you can do that, you will beable to print DVI �les just like described above.

Chapter 19: Formatting and Printing Hardcopy 150

� Send the DVI �les to a network printer queue for DVI �les. Some network printershave special queues for printing DVI �les. You should be able to set up your networksoftware to send �les to that queue. In some cases, the version of lpr which comeswith your network software will have a special option to send a �le to speci�c queues,like this:
lpr -Qdvi -hprint.server.domain bison.dvi

� Convert the DVI �le to a Postscript or PCL �le and send it to your local printer.See section \dvips invocation" in Dvips, and the man pages for dvilj, for detaileddescription of these tools. Once the DVI �le is converted to the format your localprinter understands directly, just send it to the appropriate port, usually `PRN'.
19.5 From an Emacs Shell

You can give formatting and printing commands from a shell within GNU Emacs. Tocreate a shell within Emacs, type M-x shell . In this shell, you can format and print thedocument. See Chapter 19 [Format and Print Hardcopy], page 147, for details.
You can switch to and from the shell bu�er while tex is running and do other editing.If you are formatting a long document on a slow machine, this can be very convenient.
You can also use texi2dvi from an Emacs shell. For example, here is how to usetexi2dvi to format and print Using and Porting GNU CC from a shell within Emacs:
texi2dvi gcc.texinfolpr -d gcc.dvi

19.6 Formatting and Printing in Texinfo Mode
Texinfo mode provides several prede�ned key commands for TEX formatting and print-ing. These include commands for sorting indices, looking at the printer queue, killing theformatting job, and recentering the display of the bu�er in which the operations occur.

C-c C-t C-b
M-x texinfo-tex-bufferRun texi2dvi on the current bu�er.
C-c C-t C-r
M-x texinfo-tex-regionRun TEX on the current region.
C-c C-t C-i
M-x texinfo-texindexSort the indices of a Texinfo �le formatted with texinfo-tex-region.
C-c C-t C-p
M-x texinfo-tex-printPrint a DVI �le that was made with texinfo-tex-region or texinfo-tex-buffer.

Chapter 19: Formatting and Printing Hardcopy 151

C-c C-t C-q
M-x tex-show-print-queueShow the print queue.
C-c C-t C-d
M-x texinfo-delete-from-print-queueDelete a job from the print queue; you will be prompted for the job num-ber shown by a preceding C-c C-t C-q command (texinfo-show-tex-print-queue).
C-c C-t C-k
M-x tex-kill-jobKill the currently running TEX job started by either texinfo-tex-region ortexinfo-tex-buffer, or any other process running in the Texinfo shell bu�er.
C-c C-t C-x
M-x texinfo-quit-jobQuit a TEX formatting job that has stopped because of an error by sending an

hxi to it. When you do this, TEX preserves a record of what it did in a `.log'�le.
C-c C-t C-l
M-x tex-recenter-output-bufferRedisplay the shell bu�er in which the TEX printing and formatting commandsare run to show its most recent output.

Thus, the usual sequence of commands for formatting a bu�er is as follows (withcomments to the right):
C-c C-t C-b Run texi2dvi on the bu�er.C-c C-t C-p Print the DVI �le.C-c C-t C-q Display the printer queue.The Texinfo mode TEX formatting commands start a subshell in Emacs called the`*tex-shell*'. The texinfo-tex-command, texinfo-texindex-command, and tex-dvi-print-command commands are all run in this shell.You can watch the commands operate in the `*tex-shell*' bu�er, and you can switchto and from and use the `*tex-shell*' bu�er as you would any other shell bu�er.The formatting and print commands depend on the values of several variables. Thedefault values are:Variable Default value
texinfo-texi2dvi-command "texi2dvi"texinfo-tex-command "tex"texinfo-texindex-command "texindex"texinfo-delete-from-print-queue-command "lprm"texinfo-tex-trailer "@bye"tex-start-of-header "%**start"tex-end-of-header "%**end"tex-dvi-print-command "lpr -d"tex-show-queue-command "lpq"

Chapter 19: Formatting and Printing Hardcopy 152

You can change the values of these variables with the M-x edit-options command(see section \Editing Variable Values" in The GNU Emacs Manual), with the M-x set-
variable command (see section \Examining and Setting Variables" in The GNU Emacs
Manual), or with your `.emacs' initialization �le (see section \Init File" in The GNU Emacs
Manual).Beginning with version 20, GNU Emacs o�ers a user-friendly interface, called Cus-
tomize, for changing values of user-de�nable variables. See section \Easy CustomizationInterface" in The GNU Emacs Manual, for more details about this. The Texinfo vari-ables can be found in the `Development/Docs/Texinfo' group, once you invoke the M-x
customize command.
19.7 Using the Local Variables List

Yet another way to apply the TEX formatting command to a Texinfo �le is to put thatcommand in a local variables list at the end of the Texinfo �le. You can then specify thetex or texi2dvi commands as a compile-command and have Emacs run it by typing M-x
compile . This creates a special shell called the `*compilation*' bu�er in which Emacsruns the compile command. For example, at the end of the `gdb.texinfo' �le, after the@bye, you could put the following:

Local Variables:compile-command: "texi2dvi gdb.texinfo"End:This technique is most often used by programmers who also compile programs this way; seesection \Compilation" in The GNU Emacs Manual.
19.8 TEX Formatting Requirements Summary

Every Texinfo �le that is to be input to TEX must begin with a \input command andmust contain an @setfilename command:
\input texinfo@setfilename arg-not-used-by-T EXThe �rst command instructs TEX to load the macros it needs to process a Texinfo �le andthe second command opens auxiliary �les.Every Texinfo �le must end with a line that terminates TEX's processing and forcesout un�nished pages:
@byeStrictly speaking, these lines are all a Texinfo �le needs to be processed successfully byTEX.Usually, however, the beginning includes an @settitle command to de�ne the titleof the printed manual, an @setchapternewpage command, a title page, a copyright page,and permissions. Besides an @bye, the end of a �le usually includes indices and a table ofcontents. (And of course most manuals contain a body of text as well.)For more information, see:

Chapter 19: Formatting and Printing Hardcopy 153

� Section 3.2.4 [@settitle], page 32
� Section 3.6.2 [@setchapternewpage], page 42
� Appendix E [Page Headings], page 206
� Section 3.4 [Titlepage & Copyright Page], page 34
� Section 4.1 [Printing Indices & Menus], page 45
� Section 4.2 [Contents], page 46

19.9 Preparing for TEX
TEX needs to know where to �nd the `texinfo.tex' �le that the `\input texinfo' com-mand on the �rst line reads. The `texinfo.tex' �le tells TEX how to handle @-commands;it is included in all standard GNU distributions.Usually, the installer has put the `texinfo.tex' �le in the default directory that con-tains TEX macros when GNU Texinfo, Emacs or other GNU software is installed. In thiscase, TEX will �nd the �le and you do not need to do anything special. If this has not beendone, you can put `texinfo.tex' in the current directory when you run TEX, and TEX will�nd it there.Also, you should install `epsf.tex', if it is not already installed from another dis-tribution. More details are at the end of the description of the @image command (seeSection 13.11 [Images], page 115).Likewise for `pdfcolor.tex', if it is not already installed and you use pdftex.Optionally, you may create an additional `texinfo.cnf', and install it as well. This�le is read by TEX when the @setfilename command is executed (see Section 3.2.3[@setfilename], page 31). You can put any commands you like there, according to localsite-wide conventions. They will be read by TEX when processing any Texinfo document.For example, if `texinfo.cnf' contains the line `@afourpaper' (see Section 19.12 [A4Paper], page 155), then all Texinfo documents will be processed with that page size ine�ect. If you have nothing to put in `texinfo.cnf', you do not need to create it.If neither of the above locations for these system �les su�ce for you, you can specify thedirectories explicitly. For `texinfo.tex', you can do this by writing the complete path forthe �le after the \input command. Another way, that works for both `texinfo.tex' and`texinfo.cnf' (and any other �le TEX might read), is to set the TEXINPUTS environmentvariable in your `.cshrc' or `.profile' �le.Which you use of `.cshrc' or `.profile' depends on whether you use a Bourneshell-compatible (sh, bash, ksh, . . .) or C shell-compatible (csh, tcsh) command inter-preter. The latter read the `.cshrc' �le for initialization information, and the former read`.profile'.In a `.cshrc' �le, you could use the following csh command sequence:
setenv TEXINPUTS .:/home/me/mylib:/usr/lib/tex/macrosIn a `.profile' �le, you could use the following sh command sequence:
TEXINPUTS=.:/home/me/mylib:/usr/lib/tex/macrosexport TEXINPUTS

Chapter 19: Formatting and Printing Hardcopy 154

On MS-DOS/MS-Windows, you would say it like this1:
set TEXINPUTS=.;d:/home/me/mylib;c:/usr/lib/tex/macros

It is customary for DOS/Windows users to put such commands in the `autoexec.bat' �le,or in the Windows Registry.
These settings would cause TEX to look for `\input' �le �rst in the current directory,indicated by the `.', then in a hypothetical user's `me/mylib' directory, and �nally in asystem directory `/usr/lib/tex/macros'.

Finally, you may wish to dump a `.fmt' �le (see section \Memory dumps" in Web2c) sothat TEX can load Texinfo faster. (The disadvantage is that then updating `texinfo.tex'requires redumping.) You can do this by running this command, assuming `epsf.tex' is�ndable by TEX:
initex texinfo @dump

(dump is a TEX primitive.) Then, move `texinfo.fmt' to wherever your .fmt �les arefound; typically, this will be in the subdirectory `web2c' of your TEX installation.
19.10 Overfull \hboxes"

TEX is sometimes unable to typeset a line without extending it into the right margin.This can occur when TEX comes upon what it interprets as a long word that it cannothyphenate, such as an electronic mail network address or a very long title. When thishappens, TEX prints an error message like this:
Overfull @hbox (20.76302pt too wide)

(In TEX, lines are in \horizontal boxes", hence the term, \hbox". `@hbox' is a TEX primitivenot needed in the Texinfo language.)
TEX also provides the line number in the Texinfo source �le and the text of the o�endingline, which is marked at all the places that TEX considered hyphenation. See Section F.2[Catching Errors with TEX Formatting], page 211, for more information about typesettingerrors.
If the Texinfo �le has an overfull hbox, you can rewrite the sentence so the overfullhbox does not occur, or you can decide to leave it. A small excursion into the right marginoften does not matter and may not even be noticeable.
If you have many overfull boxes and/or an antipathy to rewriting, you can coerce TEXinto greatly increasing the allowable interword spacing, thus (if you're lucky) avoiding manyof the bad line breaks, like this:
@tex\global\emergencystretch = .9\hsize@end tex

(You should adjust the fraction as needed.) This huge value for \emergencystretch cannotbe the default, since then the typeset output would generally be of noticeably lower quality;the default is `.15\hsize'. \hsize is the TEX dimension containing the current line width.
1 Note the use of the ;̀ ' character, instead of `: ', as directory separator on these systems.

Chapter 19: Formatting and Printing Hardcopy 155

For what overfull boxes you have, however, TEX will print a large, ugly, black rectanglebeside the line that contains the overfull hbox unless told otherwise. This is so you willnotice the location of the problem if you are correcting a draft.To prevent such a monstrosity from marring your �nal printout, write the following inthe beginning of the Texinfo �le on a line of its own, before the @titlepage command:
@finalout

19.11 Printing \Small" Books
By default, TEX typesets pages for printing in an 8.5 by 11 inch format. However, youcan direct TEX to typeset a document in a 7 by 9.25 inch format that is suitable for boundbooks by inserting the following command on a line by itself at the beginning of the Texinfo�le, before the title page:
@smallbook(Since many books are about 7 by 9.25 inches, this command might better have been calledthe @regularbooksize command, but it came to be called the @smallbook command bycomparison to the 8.5 by 11 inch format.)If you write the @smallbook command between the start-of-header and end-of-headerlines, the Texinfo mode TEX region formatting command, texinfo-tex-region, will formatthe region in \small" book size (see Section 3.2.2 [Start of Header], page 31).See Section 10.7 [small], page 89, for information about commands that make it easierto produce examples for a smaller manual.See Section 19.3 [Format with texi2dvi], page 149, and Section 19.9 [Preparing forTEX], page 153, for other ways to format with @smallbook that do not require changingthe source �le.

19.12 Printing on A4 Paper
You can tell TEX to format a document for printing on European size A4 paper (orA5) with the @afourpaper (or @afivepaper) command. Write the command on a line byitself near the beginning of the Texinfo �le, before the title page. For example, this is howyou would write the header for this manual:
\input texinfo @c -*-texinfo-*-@c %**start of header@setfilename texinfo@settitle Texinfo@afourpaper@c %**end of headerSee Section 19.3 [Format with texi2dvi], page 149, and Section 19.9 [Preparing for TEX],page 153, for other ways to format for di�erent paper sizes that do not require changingthe source �le.You may or may not prefer the formatting that results from the command @afourlatex.There's also @afourwide for A4 paper in wide format.

Chapter 19: Formatting and Printing Hardcopy 156

19.13 @pagesizes[width][, height]: Custom Page Sizes
You can explicitly specify the height and (optionally) width of the main text area onthe page with the @pagesizes command. Write this on a line by itself near the beginningof the Texinfo �le, before the title page. The height comes �rst, then the width if desired,separated by a comma. Examples:@pagesizes 200mm,150mmand @pagesizes 11.5inThis would be reasonable for printing on B5-size paper. To emphasize, this commandspeci�es the size of the text area, not the size of the paper (which is 250 mm by 177 mm forB5, 14 in by 8.5 in for legal).To make more elaborate changes, such as changing any of the page margins, you mustde�ne a new command in `texinfo.tex' (or `texinfo.cnf', see Section 19.9 [Preparing forTEX], page 153).See Section 19.3 [Format with texi2dvi], page 149, and Section 19.9 [Preparing for TEX],page 153, for other ways to specify @pagesizes that do not require changing the source �le.@pagesizes is ignored by makeinfo.

19.14 Cropmarks and Magni�cation
You can (attempt to) direct TEX to print cropmarks at the corners of pages with the@cropmarks command. Write the @cropmarks command on a line by itself between @iftexand @end iftex lines near the beginning of the Texinfo �le, before the title page, like this:@iftex@cropmarks@end iftexThis command is mainly for printers that typeset several pages on one sheet of �lm;but you can attempt to use it to mark the corners of a book set to 7 by 9.25 inches with the@smallbook command. (Printers will not produce cropmarks for regular sized output thatis printed on regular sized paper.) Since di�erent printing machines work in di�erent ways,you should explore the use of this command with a spirit of adventure. You may have torede�ne the command in `texinfo.tex'.You can attempt to direct TEX to typeset pages larger or smaller than usual with the\mag TEX command. Everything that is typeset is scaled proportionally larger or smaller.(\mag stands for \magni�cation".) This is not a Texinfo @-command, but is a plain TEXcommand that is pre�xed with a backslash. You have to write this command between @texand @end tex (see Section 16.3 [Raw Formatter Commands], page 135).Follow the \mag command with an `=' and then a number that is 1000 times themagni�cation you desire. For example, to print pages at 1.2 normal size, write the followingnear the beginning of the Texinfo �le, before the title page:@tex\mag=1200@end tex

Chapter 19: Formatting and Printing Hardcopy 157

With some printing technologies, you can print normal-sized copies that look betterthan usual by giving a larger-than-normal master to your print shop. They do the reduction,thus e�ectively increasing the resolution.Depending on your system, DVI �les prepared with a nonstandard-\mag may not printor may print only with certain magni�cations. Be prepared to experiment.
19.15 PDF Output

You can generate a PDF output �le from Texinfo source by using the pdftex programto process your �le instead of plain tex. That is, run `pdftex foo.texi' instead of `texfoo.texi', or give the `--pdf' option to texi2dvi.
PDF stands for `Portable Document Format'. It was invented by Adobe Systems someyears ago for document interchange, based on their PostScript language. A PDF reader forthe X window system is freely available, as is the de�nition of the �le format. At present,there are no `@ifpdf' or `@pdf' commands as with the other output formats.Despite the `portable' in the name, PDF �les are nowhere near as portable in practice asthe plain ASCII formats (Info, HTML) that Texinfo supports (DVI portability is arguable).They also tend to be much larger and do not support the bitmap fonts used by TEX (bydefault) very well. Nevertheless, a PDF �le does preserve an actual printed document on ascreen as faithfully as possible, so it has its place.PDF support in Texinfo is fairly rudimentary.

http://www.foolabs.com/xpdf/
http://partners.adobe.com/asn/developer/technotes/

Chapter 20: Creating and Installing Info Files 158

20 Creating and Installing Info Files

This chapter describes how to create and install Info �les. See Section 1.4 [Info Files],page 6, for general information about the �le format itself.
20.1 Creating an Info File

makeinfo is a program that converts a Texinfo �le into an Info �le, HTML �le, or plaintext. texinfo-format-region and texinfo-format-buffer are GNU Emacs functionsthat convert Texinfo to Info.For information on installing the Info �le in the Info system, see Section 20.2 [Installingan Info File], page 167.
20.1.1 makeinfo Preferred

The makeinfo utility creates an Info �le from a Texinfo source �le more quickly thaneither of the Emacs formatting commands and provides better error messages. We recom-mend it. makeinfo is a C program that is independent of Emacs. You do not need to runEmacs to use makeinfo, which means you can use makeinfo on machines that are too smallto run Emacs. You can run makeinfo in any one of three ways: from an operating systemshell, from a shell inside Emacs, or by typing the C-c C-m C-r or the C-c C-m C-bcommandin Texinfo mode in Emacs.The texinfo-format-region and the texinfo-format-buffer commands are usefulif you cannot run makeinfo. Also, in some circumstances, they format short regions orbu�ers more quickly than makeinfo.
20.1.2 Running makeinfo from a Shell

To create an Info �le from a Texinfo �le, type makeinfo followed by the name of theTexinfo �le. Thus, to create the Info �le for Bison, type the following to the shell:
makeinfo bison.texinfo(You can run a shell inside Emacs by typing M-x shell .)

20.1.3 Options for makeinfo

The makeinfo command takes a number of options. Most often, options are used toset the value of the �ll column and specify the footnote style. Each command line option isa word preceded by `--' or a letter preceded by `-'. You can use abbreviations for the longoption names as long as they are unique.For example, you could use the following shell command to create an Info �le for`bison.texinfo' in which each line is �lled to only 68 columns:
makeinfo --fill-column=68 bison.texinfoYou can write two or more options in sequence, like this:

Chapter 20: Creating and Installing Info Files 159

makeinfo --no-split --fill-column=70 ...This would keep the Info �le together as one possibly very long �le and would also set the�ll column to 70.The options are:
-D var Cause the variable var to be de�ned. This is equivalent to @set var in theTexinfo �le (see Section 16.4 [set clear value], page 136).
--commands-in-node-namesAllow @-commands in node names. This is not recommended, as it can probablynever be implemented in TEX. It also makes makeinfo much slower. Also, thisoption is ignored when `--no-validate' is used. See Section 20.1.4 [PointerValidation], page 162, for more details.
--docbook Generate DocBook output rather than Info.
--enable-encodingOutput accented and special characters in Info or plain text output based on`@documentencoding'.
--error-limit=limit-e limit Set the maximum number of errors that makeinfo will report before exiting(on the assumption that continuing would be useless); default 100.
--fill-column=width-f width Specify the maximum number of columns in a line; this is the right-hand edgeof a line. Paragraphs that are �lled will be �lled to this width. (Filling is theprocess of breaking up and connecting lines so that lines are the same lengthas or shorter than the number speci�ed as the �ll column. Lines are brokenbetween words.) The default value is 72. Ignored with `--html'.
--footnote-style=style-s style Set the footnote style to style, either `end' for the end node style (the default) or`separate' for the separate node style. The value set by this option overrides thevalue set in a Texinfo �le by an @footnotestyle command (see Section 13.10[Footnotes], page 114). When the footnote style is `separate', makeinfo makesa new node containing the footnotes found in the current node. When thefootnote style is `end', makeinfo places the footnote references at the end ofthe current node. Ignored with `--html'.
--force-F Ordinarily, if the input �le has errors, the output �les are not created. Withthis option, they are preserved.
--help-h Print a usage message listing all available options, then exit successfully.
--html Generate HTML output rather than Info. See Section 20.1.9 [GeneratingHTML], page 166. By default, the HTML output is split into one output �leper source node, and the split output is written into a subdirectory with thename of the top-level info �le.

Chapter 20: Creating and Installing Info Files 160

-I dir Append dir to the directory search list for �nding �les that are included usingthe @include command. By default, makeinfo searches only the current direc-tory. If dir is not given, the current directory `.' is appended. Note that dir canactually be a list of several directories separated by the usual path separatorcharacter (`:' on Unix, `;' on MS-DOS/MS-Windows).
--ifhtml--ifinfo--ifplaintext--iftex--ifxml For the speci�ed format, process `@ifformat ' and `@format ' commands evenif not generating the given output format. For instance, if `--iftex' is spec-i�ed, then `@iftex' and `@tex' blocks will be read. This can be useful whenpostprocessing the output.
--macro-expand=file-E file Output the Texinfo source with all the macros expanded to the named �le.Normally, the results of macro expansion are used internally by makeinfo andthen discarded. This option is used by texi2dvi if you are using an old versionof `texinfo.tex' that does not support @macro.
--no-headersFor Info output, do not include menus or node separator lines in the output.This results in a simple plain text �le that you can (for example) send in emailwithout complications, or include in a distribution (as in an `INSTALL' �le).

For HTML output, likewise omit menus. And if `--no-split' is also speci�ed,do not include a navigation links at the top of each node (these are neverincluded in the default case of split output). See Section 20.1.9 [GeneratingHTML], page 166.
In both cases, write to standard output by default (can still be overridden by`-o').

--no-ifhtml--no-ifinfo--no-ifplaintext--no-iftex--no-ifxmlDo not process `@ifformat ' and `@format ' commands even if generating thegiven format. For instance, if `--no-ifhtml' is speci�ed, then `@ifhtml' and`@html' blocks will not be read.
--no-splitSuppress the splitting stage of makeinfo. By default, large output �les (wherethe size is greater than 70k bytes) are split into smaller sub�les. For Info output,each one is approximately 50k bytes. For HTML output, each �le contains onenode (see Section 20.1.9 [Generating HTML], page 166).

Chapter 20: Creating and Installing Info Files 161

--no-pointer-validate--no-validateSuppress the pointer-validation phase of makeinfo. This can also be done withthe @novalidate command (see Section 19.1 [Use TEX], page 147). Normally,after a Texinfo �le is processed, some consistency checks are made to ensure thatcross references can be resolved, etc. See Section 20.1.4 [Pointer Validation],page 162.
--no-warn Suppress warning messages (but not error messages). You might want this ifthe �le you are creating has examples of Texinfo cross references within it, andthe nodes that are referenced do not actually exist.
--number-sectionsOutput chapter, section, and appendix numbers as in printed manuals.
--no-number-footnotesSuppress automatic footnote numbering. By default, makeinfo numbers eachfootnote sequentially in a single node, resetting the current footnote number to1 at the start of each node.
--output=file-o file Specify that the output should be directed to �le and not to the �le namespeci�ed in the @setfilename command found in the Texinfo source (see Sec-tion 3.2.3 [set�lename], page 31). If �le is `-', output goes to standard outputand `--no-split' is implied. For split HTML output, �le is the name for the di-rectory into which all HTML nodes are written (see Section 20.1.9 [GeneratingHTML], page 166).
-P dir Prepend dir to the directory search list for @include. If dir is not given, thecurrent directory `.' is prepended. See `-I' for more details.
--paragraph-indent=indent-p indent Set the paragraph indentation style to indent. The value set by this optionoverrides the value set in a Texinfo �le by an @paragraphindent command (seeSection 3.6.3 [paragraphindent], page 43). The value of indent is interpreted asfollows:

`asis' Preserve any existing indentation at the starts of paragraphs.
`0' or `none'Delete any existing indentation.
num Indent each paragraph by num spaces.

--reference-limit=limit-r limit Set the value of the number of references to a node that makeinfo will makewithout reporting a warning. If a node has more than this number of referencesin it, makeinfo will make the references but also report a warning. The defaultis 1000.
--split-size=numKeep Info �les to at most num characters; default is 50,000.

Chapter 20: Creating and Installing Info Files 162

-U var Cause var to be unde�ned. This is equivalent to @clear var in the Texinfo �le(see Section 16.4 [set clear value], page 136).
--verbose Cause makeinfo to display messages saying what it is doing. Normally,makeinfo only outputs messages if there are errors or warnings.
--version-V Print the version number, then exit successfully.
--xml Generate XML output rather than Info.
20.1.4 Pointer Validation

If you do not suppress pointer validation with the `--no-validate' option or the@novalidate command in the source �le (see Section 19.1 [Use TEX], page 147), makeinfowill check the validity of the �nal Info �le. Mostly, this means ensuring that nodes you havereferenced really exist. Here is a complete list of what is checked:1. If a `Next', `Previous', or `Up' node reference is a reference to a node in the current�le and is not an external reference such as to `(dir)', then the referenced node mustexist.2. In every node, if the `Previous' node is di�erent from the `Up' node, then the nodepointed to by the `Previous' �eld must have a `Next' �eld which points back to thisnode.3. Every node except the `Top' node must have an `Up' pointer.4. The node referenced by an `Up' pointer must itself reference the current node througha menu item, unless the node referenced by `Up' has the form `(�le)'.5. If the `Next' reference of a node is not the same as the `Next' reference of the `Up'reference, then the node referenced by the `Next' pointer must have a `Previous' pointerthat points back to the current node. This rule allows the last node in a section topoint to the �rst node of the next chapter.6. Every node except `Top' should be referenced by at least one other node, either via the`Previous' or `Next' links, or via a menu or a cross-reference.
Some Texinfo documents might fail during the validation phase because they use com-mands like @value and @definfoenclose in node de�nitions and cross-references inconsis-tently. Consider the following example:
@set nodename Node 1
@node @value{nodename}, Node 2, Top, Top
This is node 1.
@node Node 2, , Node 1, Top
This is node 2.Here, the node \Node 1" was referenced both verbatim and through @value.

Chapter 20: Creating and Installing Info Files 163

By default, makeinfo fails such cases, because node names are not fully expanded untilthey are written to the output �le. You should always try to reference nodes consistently;e.g., in the above example, the second @node line should have also used @value. However,if, for some reason, you must reference node names inconsistently, and makeinfo fails tovalidate the �le, you can use the `--commands-in-node-names' option to force makeinfoto perform the expensive expansion of all node names it �nds in the document. Thismight considerably slow down the program, though; twofold increase in conversion timewas measured for large documents such as the Jargon �le.The support for @-commands in @node directives is not general enough to be freelyused. For example, if the example above rede�ned nodename somewhere in the document,makeinfo will fail to convert it, even if invoked with the `--commands-in-node-names'option.`--commands-in-node-names' has no e�ect if the `--no-validate' option is given.
20.1.5 Running makeinfo Within Emacs

You can run makeinfo in GNU Emacs Texinfo mode by using either the makeinfo-region or the makeinfo-buffer commands. In Texinfo mode, the commands are boundto C-c C-m C-r and C-c C-m C-bby default.
C-c C-m C-r
M-x makeinfo-regionFormat the current region for Info.
C-c C-m C-b
M-x makeinfo-bufferFormat the current bu�er for Info.

When you invoke makeinfo-region the output goes to a temporary bu�er. When youinvoke makeinfo-buffer output goes to the �le set with @setfilename (see Section 3.2.3[set�lename], page 31).The Emacs makeinfo-region and makeinfo-buffer commands run the makeinfoprogram in a temporary shell bu�er. If makeinfo �nds any errors, Emacs displays the errormessages in the temporary bu�er.You can parse the error messages by typing C-x ` (next-error). This causes Emacsto go to and position the cursor on the line in the Texinfo source that makeinfo thinkscaused the error. See section \Running make or Compilers Generally" in The GNU Emacs
Manual, for more information about using the next-error command.In addition, you can kill the shell in which the makeinfo command is running or makethe shell bu�er display its most recent output.
C-c C-m C-k
M-x makeinfo-kill-jobKill the current running makeinfo job (from makeinfo-region or makeinfo-buffer).
C-c C-m C-l
M-x makeinfo-recenter-output-bufferRedisplay the makeinfo shell bu�er to display its most recent output.

Chapter 20: Creating and Installing Info Files 164

(Note that the parallel commands for killing and recentering a TEX job are C-c C-t C-kand C-c C-t C-l . See Section 19.6 [Texinfo Mode Printing], page 150.)You can specify options for makeinfo by setting the makeinfo-options variable witheither the M-x edit-options or the M-x set-variable command, or by setting the variablein your `.emacs' initialization �le.For example, you could write the following in your `.emacs' �le:(setq makeinfo-options"--paragraph-indent=0 --no-split--fill-column=70 --verbose")For more information, see Section 20.1.3 [Options for makeinfo], page 158, as well as\Editing Variable Values," \Examining and Setting Variables," and \Init File" in The GNU
Emacs Manual.
20.1.6 The texinfo-format... Commands

In GNU Emacs in Texinfo mode, you can format part or all of a Texinfo �le withthe texinfo-format-region command. This formats the current region and displays theformatted text in a temporary bu�er called `*Info Region*'.Similarly, you can format a bu�er with the texinfo-format-buffer command. Thiscommand creates a new bu�er and generates the Info �le in it. Typing C-x C-s will savethe Info �le under the name speci�ed by the @setfilename line which must be near thebeginning of the Texinfo �le.
C-c C-e C-rtexinfo-format-regionFormat the current region for Info.
C-c C-e C-btexinfo-format-bufferFormat the current bu�er for Info.

The texinfo-format-region and texinfo-format-buffer commands provide youwith some error checking, and other functions can provide you with further help in �ndingformatting errors. These procedures are described in an appendix; see Appendix F [CatchingMistakes], page 210. However, the makeinfo program is often faster and provides bettererror checking (see Section 20.1.5 [makeinfo in Emacs], page 163).
20.1.7 Batch Formatting

You can format Texinfo �les for Info using batch-texinfo-format and Emacs Batchmode. You can run Emacs in Batch mode from any shell, including a shell inside of Emacs.(See section \Command Line Switches and Arguments" in The GNU Emacs Manual.)Here is a shell command to format all the �les that end in `.texinfo' in the currentdirectory:emacs -batch -funcall batch-texinfo-format *.texinfoEmacs processes all the �les listed on the command line, even if an error occurs whileattempting to format some of them.

Chapter 20: Creating and Installing Info Files 165

Run batch-texinfo-format only with Emacs in Batch mode as shown; it is not in-teractive. It kills the Batch mode Emacs on completion.
batch-texinfo-format is convenient if you lack makeinfo and want to format severalTexinfo �les at once. When you use Batch mode, you create a new Emacs process. Thisfrees your current Emacs, so you can continue working in it. (When you run texinfo-format-region or texinfo-format-buffer, you cannot use that Emacs for anything elseuntil the command �nishes.)

20.1.8 Tag Files and Split Files

If a Texinfo �le has more than 30,000 bytes, texinfo-format-buffer automaticallycreates a tag table for its Info �le; makeinfo always creates a tag table. With a tag table,Info can jump to new nodes more quickly than it can otherwise.In addition, if the Texinfo �le contains more than about 70,000 bytes, texinfo-format-buffer and makeinfo split the large Info �le into shorter indirect sub�les of about 50,000bytes each. Big �les are split into smaller �les so that Emacs does not need to make a largebu�er to hold the whole of a large Info �le; instead, Emacs allocates just enough memory forthe small, split-o� �le that is needed at the time. This way, Emacs avoids wasting memorywhen you run Info. (Before splitting was implemented, Info �les were always kept shortand include �les were designed as a way to create a single, large printed manual out of thesmaller Info �les. See Appendix D [Include Files], page 202, for more information. Include�les are still used for very large documents, such as The Emacs Lisp Reference Manual, inwhich each chapter is a separate �le.)When a �le is split, Info itself makes use of a shortened version of the original �le thatcontains just the tag table and references to the �les that were split o�. The split-o� �lesare called indirect �les.The split-o� �les have names that are created by appending `-1', `-2', `-3' and so onto the �le name speci�ed by the @setfilename command. The shortened version of theoriginal �le continues to have the name speci�ed by @setfilename.At one stage in writing this document, for example, the Info �le was saved as the �le`test-texinfo' and that �le looked like this:
Info file: test-texinfo, -*-Text-*-produced by texinfo-format-bufferfrom file: new-texinfo-manual.texinfo
^_Indirect:test-texinfo-1: 102test-texinfo-2: 50422test-texinfo-3: 101300^_^LTag table:(Indirect)Node: overview^?104Node: info file^?1271

Chapter 20: Creating and Installing Info Files 166

Node: printed manual^?4853Node: conventions^?6855...(But `test-texinfo' had far more nodes than are shown here.) Each of the split-o�,indirect �les, `test-texinfo-1', `test-texinfo-2', and `test-texinfo-3', is listed in this�le after the line that says `Indirect:'. The tag table is listed after the line that says `Tagtable:'.In the list of indirect �les, the number following the �le name records the cumulativenumber of bytes in the preceding indirect �les, not counting the �le list itself, the tagtable, or the permissions text in each �le. In the tag table, the number following the nodename records the location of the beginning of the node, in bytes from the beginning of the(unsplit) output.If you are using texinfo-format-buffer to create Info �les, you may want to runthe Info-validate command. (The makeinfo command does such a good job on its own,you do not need Info-validate.) However, you cannot run the M-x Info-validate node-checking command on indirect �les. For information on how to prevent �les from beingsplit and how to validate the structure of the nodes, see Section F.5.1 [Using Info-validate],page 215.
20.1.9 Generating HTML

Besides generating output in the Info format, you can use the `--html' option togenerate output in HTML format, for installation on a web site (for example). By default,the HTML output is split at node level.When splitting, the HTML output �les are written into a subdirectory. The subdi-rectory is named according to the name from @setfilename with any extension removed;for example, HTML output for @setfilename emacs.info would be written into a subdi-rectory named `emacs'. If that directory cannot be created for any reason, then `.html' isappended to the directory name, as in `emacs.html' (this is necessary because sometimesthe info �le is named without an extension, e.g., `texinfo'). If the `name.html' directorycan't be created either, makeinfo gives up. In any case, the top-level output �le within thedirectory is always named `index.html'.Monolithic output (--no-split) is named according to @setfilename or --outfile.Cross-document node references are not supported in monolithic HTML.Texinfo input marked up with the @ifhtml command will produce output only with the`--html' option supplied. Input marked up with the @html is passed literally to the output(suppressing the normal escaping of input `<', `>' and `&' characters which have specialsigni�cance in HTML). Similarly for the `--xml' option and @ifxml and @xml sections.The `--footnote-style' option is currently ignored for HTML output; footnotes arelinked to the end of the output �le.The HTML generated is mostly standard (i.e., HTML 2.0, RFC-1866). The exception isthat HTML 3.2 tables are generated from the @multitable command, but tagged to degradeas well as possible in browsers without table support. The HTML 4 `lang' attribute on the`<html>' attribute is also used. Please report output from an error-free run of makeinfowhich has browser portability problems as a bug.

Chapter 20: Creating and Installing Info Files 167

Navigation bars are inserted at the start of nodes, similarly to Info output. The`--no-headers' option will suppress this if used with `--no-split'. Header <link>elements in split output can support info-like navigation with browsers like Lynxand Emacs W3 which implement this HTML 1.0 feature. `@xref' commands to otherdocuments are generated assuming the other document is available in split HTML form,and installed in the same HTML documentation tree, at `../<info-document>/'.
20.2 Installing an Info File

Info �les are usually kept in the `info' directory. You can read Info �les using thestandalone Info program or the Info reader built into Emacs. (See Info �le `info', node`Top', for an introduction to Info.)
20.2.1 The Directory File ` dir '

For Info to work, the `info' directory must contain a �le that serves as a top leveldirectory for the Info system. By convention, this �le is called `dir'. (You can �nd thelocation of this �le within Emacs by typing C-h i to enter Info and then typing C-x C-f tosee the pathname to the `info' directory.)
The `dir' �le is itself an Info �le. It contains the top level menu for all the Info �les inthe system. The menu looks like this:
* Menu:* Info: (info). Documentation browsing system.* Emacs: (emacs). The extensible, self-documentingtext editor.* Texinfo: (texinfo). With one source file, makeeither a printed manual using@TeX{} or an Info file....

Each of these menu entries points to the `Top' node of the Info �le that is named inparentheses. (The menu entry does not need to specify the `Top' node, since Info goes tothe `Top' node if no node name is mentioned. See Section 7.5 [Nodes in Other Info Files],page 63.)
Thus, the `Info' entry points to the `Top' node of the `info' �le and the `Emacs' entrypoints to the `Top' node of the `emacs' �le.
In each of the Info �les, the `Up' pointer of the `Top' node refers back to the dir �le.For example, the line for the `Top' node of the Emacs manual looks like this in Info:
File: emacs Node: Top, Up: (DIR), Next: Distrib

In this case, the `dir' �le name is written in upper case letters|it can be written in eitherupper or lower case. This is not true in general, it is a special case for `dir'.

Chapter 20: Creating and Installing Info Files 168

20.2.2 Listing a New Info File

To add a new Info �le to your system, you must write a menu entry to add to the menuin the `dir' �le in the `info' directory. For example, if you were adding documentation forGDB, you would write the following new entry:
* GDB: (gdb). The source-level C debugger.The �rst part of the menu entry is the menu entry name, followed by a colon. The secondpart is the name of the Info �le, in parentheses, followed by a period. The third part is thedescription.The name of an Info �le often has a `.info' extension. Thus, the Info �le for GDBmight be called either `gdb' or `gdb.info'. The Info reader programs automatically try the�le name both with and without `.info'1; so it is better to avoid clutter and not to write`.info' explicitly in the menu entry. For example, the GDB menu entry should use just`gdb' for the �le name, not `gdb.info'.

20.2.3 Info Files in Other Directories

If an Info �le is not in the `info' directory, there are three ways to specify its location:1. Write the pathname in the `dir' �le as the second part of the menu.2. If you are using Emacs, list the name of the �le in a second `dir' �le, in its directory;and then add the name of that directory to the Info-directory-list variable in yourpersonal or site initialization �le.This variable tells Emacs where to look for `dir' �les (the �les must be named `dir').Emacs merges the �les named `dir' from each of the listed directories. (In Emacsversion 18, you can set the Info-directory variable to the name of only one directory.)3. Specify the Info directory name in the INFOPATH environment variable in your`.profile' or `.cshrc' initialization �le. (Only you and others who set thisenvironment variable will be able to �nd Info �les whose location is speci�ed this way.)
For example, to reach a test �le in the `/home/bob/info' directory, you could add anentry like this to the menu in the standard `dir' �le:
* Test: (/home/bob/info/info-test). Bob's own test file.In this case, the absolute �le name of the `info-test' �le is written as the second part ofthe menu entry.Alternatively, you could write the following in your `.emacs' �le:
(require 'info)(setq Info-directory-list(cons (expand-file-name "/home/bob/info")Info-directory-list))This tells Emacs to merge the system `dir' �le with the `dir' �le in `/home/bob/info'.Thus, Info will list the `/home/bob/info/info-test' �le as a menu entry in the`/home/bob/info/dir' �le. Emacs does the merging only when M-x info is �rst run, so

1 On MS-DOS/MS-Windows systems, Info will try the ` .inf ' extension as well.

Chapter 20: Creating and Installing Info Files 169

if you want to set Info-directory-list in an Emacs session where you've already runinfo, you must (setq Info-dir-contents nil) to force Emacs to recompose the `dir'�le. Finally, you can tell Info where to look by setting the INFOPATH environment variablein your shell startup �le, such as `.cshrc', `.profile' or `autoexec.bat'. If you use aBourne-compatible shell such as sh or bash for your shell command interpreter, you setthe INFOPATH environment variable in the `.profile' initialization �le; but if you use cshor tcsh, you set the variable in the `.cshrc' initialization �le. On MS-DOS/MS-Windowssystems, you must set INFOPATH in your `autoexec.bat' �le or in the Registry. Each typeof shell uses a di�erent syntax.
� In a `.cshrc' �le, you could set the INFOPATH variable as follows:

setenv INFOPATH .:~/info:/usr/local/emacs/info

� In a `.profile' �le, you would achieve the same e�ect by writing:
INFOPATH=.:$HOME/info:/usr/local/emacs/info
export INFOPATH

� In a `autoexec.bat' �le, you write this command2:
set INFOPATH=.;%HOME%/info;c:/usr/local/emacs/info

The `.' indicates the current directory as usual. Emacs uses the INFOPATH environmentvariable to initialize the value of Emacs's own Info-directory-list variable. The stand-alone Info reader merges any �les named `dir' in any directory listed in the INFOPATHvariable into a single menu presented to you in the node called `(dir)Top'.However you set INFOPATH, if its last character is a colon3, this is replaced by thedefault (compiled-in) path. This gives you a way to augment the default path with newdirectories without having to list all the standard places. For example (using sh syntax):
INFOPATH=/local/info:export INFOPATHwill search `/local/info' �rst, then the standard directories. Leading or doubled colonsare not treated specially.When you create your own `dir' �le for use with Info-directory-list or INFOPATH,it's easiest to start by copying an existing `dir' �le and replace all the text after the `* Menu:'with your desired entries. That way, the punctuation and special CTRL- characters thatInfo needs will be present.

20.2.4 Installing Info Directory Files

When you install an Info �le onto your system, you can use the program install-info to update the Info directory �le `dir'. Normally the make�le for the package runsinstall-info, just after copying the Info �le into its proper installed location.In order for the Info �le to work with install-info, you include the commands@dircategory and @direntry. . .@end direntry in the Texinfo source �le. Use @direntry
2 Note the use of ;̀ ' as the directory separator, and a di�erent syntax for using values of other environ-

ment variables.3 On MS-DOS/MS-Windows systems, use semi-colon instead.

Chapter 20: Creating and Installing Info Files 170

to specify the menu entries to add to the Info directory �le, and use @dircategory to spec-ify which part of the Info directory to put it in. Here is how these commands are used inthis manual:
@dircategory Texinfo documentation system
@direntry
* Texinfo: (texinfo). The GNU documentation format.
* install-info: (texinfo)Invoking install-info. ...
...
@end direntryHere's what this produces in the Info �le:
INFO-DIR-SECTION Texinfo documentation system
START-INFO-DIR-ENTRY
* Texinfo: (texinfo). The GNU documentation format.
* install-info: (texinfo)Invoking install-info. ...
...
END-INFO-DIR-ENTRYThe install-info program sees these lines in the Info �le, and that is how it knows whatto do.Always use the @direntry and @dircategory commands near the beginning of theTexinfo input, before the �rst @node command. If you use them later on in the input,install-info will not notice them.If you use @dircategory more than once in the Texinfo source, each usage speci�esthe `current' category; any subsequent @direntry commands will add to that category.When choosing the categories for @dircategory, we recommend consultingthe http://www.gnu.org/directory. If your program is not listed there, or listedincorrectly or incompletely, please report the situation to the directory maintainers(bug-directory@gnu.org) so that the category names can be kept in sync.Here are a few examples:EmacsLocalizationPrintingSoftware LibrariesEach `Invoking' node for every program installed should have a corresponding@direntry. This lets users easily �nd the documentation for the di�erent programs theycan run, as with the traditional man system.

20.2.5 Invoking install-info

install-info inserts menu entries from an Info �le into the top-level `dir' �le in theInfo system (see the previous sections for an explanation of how the `dir' �le works). It'smost often run as part of software installation, or when constructing a `dir' �le for allmanuals on a system. Synopsis:
install-info [option]... [info-file [dir-file]]If info-�le or dir-�le are not speci�ed, the options (described below) that de�ne themmust be. There are no compile-time defaults, and standard input is never used. install-info can read only one Info �le and write only one `dir' �le per invocation.

Free Sofware Directory
mailto:bug-directory@gnu.org

Chapter 20: Creating and Installing Info Files 171

If dir-�le (however speci�ed) does not exist, install-info creates it if possible (withno entries).If any input �le is compressed with gzip (see section \Invoking gzip" in Gzip),install-info automatically uncompresses it for reading. And if dir-�le is compressed,install-info also automatically leaves it compressed after writing any changes. If dir-�leitself does not exist, install-info tries to open `dir-file .gz'.Options:
--delete Delete the entries in info-�le from dir-�le . The �le name in the entry in dir-�lemust be info-�le (except for an optional `.info' in either one). Don't insertany new entries.
--dir-file=name-d name Specify �le name of the Info directory �le. This is equivalent to using the dir-�leargument.
--entry=text-e text Insert text as an Info directory entry; text should have the form of an Info menuitem line plus zero or more extra lines starting with whitespace. If you specifymore than one entry, they are all added. If you don't specify any entries, theyare determined from information in the Info �le itself.
--help-h Display a usage message listing basic usage and all available options, then exitsuccessfully.
--info-file=file-i file Specify Info �le to install in the directory. Equivalent to using the info-�leargument.
--info-dir=dir-D dir Specify the directory where `dir' resides. Equivalent to `--dir-file=dir /dir'.
--item=textSame as `--entry=text '. An Info directory entry is actually a menu item.
--quiet Suppress warnings.
--remove-r Same as `--delete'.
--section=sec-s sec Put this �le's entries in section sec of the directory. If you specify more thanone section, all the entries are added in each of the sections. If you don't specifyany sections, they are determined from information in the Info �le itself.
--version-V Display version information and exit successfully.

Appendix A: @-Command List 172

Appendix A @-Command List

Here is an alphabetical list of the @-commands in Texinfo. Square brackets, [], indicateoptional arguments; an ellipsis, `...', indicates repeated text.
@whitespaceAn @ followed by a space, tab, or newline produces a normal, stretchable, in-terword space. See Section 13.2.3 [Multiple Spaces], page 106.
@! Generate an exclamation point that really does end a sentence (usually after anend-of-sentence capital letter). See Section 13.2.2 [Ending a Sentence], page 106.
@"@' Generate an umlaut or acute accent, respectively, over the next character, asin �o and �o. See Section 13.3 [Inserting Accents], page 107.
@* Force a line break. Do not end a paragraph that uses @* with an @refillcommand. See Section 14.2 [Line Breaks], page 117.
@,{c} Generate a cedilla accent under c, as in �c. See Section 13.3 [Inserting Accents],page 107.
@- Insert a discretionary hyphenation point. See Section 14.3 [- and hyphenation],page 118.
@. Produce a period that really does end a sentence (usually after an end-of-sentence capital letter). See Section 13.2.2 [Ending a Sentence], page 106.
@: Indicate to TEX that an immediately preceding period, question mark, excla-mation mark, or colon does not end a sentence. Prevent TEX from insertingextra whitespace as it does at the end of a sentence. The command has no e�ecton the Info �le output. See Section 13.2.1 [Not Ending a Sentence], page 106.
@= Generate a macron (bar) accent over the next character, as in �o. See Section 13.3[Inserting Accents], page 107.
@? Generate a question mark that really does end a sentence (usually after an end-of-sentence capital letter). See Section 13.2.2 [Ending a Sentence], page 106.
@@ Stands for an at sign, `@'. See Section 13.1 [Inserting @ and braces], page 105.
@\ Stands for a backslash (`\') inside @math. See Section 13.8 [math], page 110.
@^@` Generate a circum
ex (hat) or grave accent, respectively, over the next charac-ter, as in ô and �e. See Section 13.3 [Inserting Accents], page 107.
@{ Stands for a left brace, `{'. See Section 13.1 [Inserting @ and braces], page 105.
@} Stands for a right-hand brace, `}'.See Section 13.1 [Inserting @ and braces], page 105.
@~ Generate a tilde accent over the next character, as in ~N. See Section 13.3[Inserting Accents], page 107.

Appendix A: @-Command List 173

@AA{}@aa{} Generate the uppercase and lowercase Scandinavian A-ring letters, respectively:�A, �a. See Section 13.3 [Inserting Accents], page 107.
@acronym{abbrev }Tag abbrev as an acronym, that is, an abbreviation written in all capital letters,such as `NASA'. See Section 9.1.13 [acronym], page 82.
@AE{}@ae{} Generate the uppercase and lowercase AE ligatures, respectively: �, �. SeeSection 13.3 [Inserting Accents], page 107.@afivepaperChange page dimensions for the A5 paper size. See Section 19.12 [A4 Paper],page 155.
@afourlatex@afourpaper@afourwideChange page dimensions for the A4 paper size. See Section 19.12 [A4 Paper],page 155.
@alias new=existingMake the command `@new' an alias for the existing command `@existing '. SeeSection 18.4 [alias], page 144.
@anchor{name}De�ne name as the current location for use as a cross-reference target. SeeSection 6.5 [@anchor], page 60.
@appendix titleBegin an appendix. The title appears in the table of contents of a printedmanual. In Info, the title is underlined with asterisks. See Section 5.5 [The@unnumbered and @appendix Commands], page 50.
@appendixsec title@appendixsection titleBegin an appendix section within an appendix. The section title appears in thetable of contents of a printed manual. In Info, the title is underlined with equalsigns. @appendixsection is a longer spelling of the @appendixsec command.See Section 5.8 [Section Commands], page 51.
@appendixsubsec titleBegin an appendix subsection within an appendix. The title appears in thetable of contents of a printed manual. In Info, the title is underlined withhyphens. See Section 5.10 [Subsection Commands], page 52.
@appendixsubsubsec titleBegin an appendix subsubsection within an appendix subsection. The titleappears in the table of contents of a printed manual. In Info, the title isunderlined with periods. See Section 5.11 [The `subsub' Commands], page 52.

Appendix A: @-Command List 174

@asis Used following @table, @ftable, and @vtable to print the table's �rst columnwithout highlighting (\as is"). See Section 11.3 [Making a Two-column Table],page 96.
@author authorTypeset author
ushleft and underline it. See Section 3.4.3 [The @title and@author Commands], page 36.
@b{text } Print text in bold font. No e�ect in Info. See Section 9.2.3 [Fonts], page 84.
@bullet{} Generate a large round dot, or the closest possible thing to one. See Sec-tion 13.4.2 [@bullet], page 109.
@bye Stop formatting a �le. The formatters do not see the contents of a �le followingan @bye command. See Chapter 4 [Ending a File], page 45.
@c commentBegin a comment in Texinfo. The rest of the line does not appear in eitherthe Info �le or the printed manual. A synonym for @comment. See Section 1.8[Comments], page 10.
@cartoucheHighlight an example or quotation by drawing a box with rounded cornersaround it. Pair with @end cartouche. No e�ect in Info. See Section 10.13[Drawing Cartouches Around Examples], page 92.)
@center line-of-textCenter the line of text following the command. See Section 3.4.2 [@center],page 36.
@centerchap line-of-textLike @chapter, but centers the chapter title. See Section 5.4 [@chapter],page 50.
@chapheading titlePrint a chapter-like heading in the text, but not in the table of contents of aprinted manual. In Info, the title is underlined with asterisks. See Section 5.6[@majorheading and @chapheading], page 50.
@chapter titleBegin a chapter. The chapter title appears in the table of contents of aprinted manual. In Info, the title is underlined with asterisks. See Section 5.4[@chapter], page 50.
@cindex entryAdd entry to the index of concepts. See Section 12.1 [De�ning the Entries ofan Index], page 100.
@cite{reference }Highlight the name of a book or other reference that lacks a companion Info�le. See Section 9.1.12 [@cite], page 82.

Appendix A: @-Command List 175

@clear flag Unset
ag , preventing the Texinfo formatting commands from formatting textbetween subsequent pairs of @ifset flag and @end ifset commands, and pre-venting @value{flag } from expanding to the value to which
ag is set. SeeSection 16.4 [@set @clear @value], page 136.
@code{sample-code }Highlight text that is an expression, a syntactically complete token of a pro-gram, or a program name. See Section 9.1.1 [@code], page 76.
@command{command-name}Indicate a command name, such as ls. See Section 9.1.9 [@command], page 81.
@comment commentBegin a comment in Texinfo. The rest of the line does not appear in either theInfo �le or the printed manual. A synonym for @c. See Section 1.8 [Comments],page 10.
@contents Print a complete table of contents. Has no e�ect in Info, which uses menusinstead. See Section 4.2 [Generating a Table of Contents], page 46.
@copyright{}Generate a copyright symbol. See Section 13.5.2 [@copyright{}], page 109.
@defcodeindex index-nameDe�ne a new index and its indexing command. Print entries in an @code font.See Section 12.5 [De�ning New Indices], page 103.
@defcv category class name@defcvx category class nameFormat a description for a variable associated with a class in object-orientedprogramming. Takes three arguments: the category of thing being de�ned, theclass to which it belongs, and its name. See Chapter 15 [De�nition Commands],page 121, and Section 15.3 [Def Cmds in Detail], page 123.
@deffn category name arguments...@deffnx category name arguments...Format a description for a function, interactive command, or similar entity thatmay take arguments. @deffn takes as arguments the category of entity beingdescribed, the name of this particular entity, and its arguments, if any. SeeChapter 15 [De�nition Commands], page 121.
@defindex index-nameDe�ne a new index and its indexing command. Print entries in a roman font.See Section 12.5 [De�ning New Indices], page 103.
@definfoenclose newcmd, before , after ,Create new @-command newcmd for Info that marks text by enclosing it instrings that precede and follow the text. See Section 18.5 [de�nfoenclose],page 145.

Appendix A: @-Command List 176

@defivar class instance-variable-name@defivarx class instance-variable-nameThis command formats a description for an instance variable in object-orientedprogramming. The command is equivalent to `@defcv {Instance Variable}...'. See Chapter 15 [De�nition Commands], page 121, and Section 15.3 [DefCmds in Detail], page 123.
@defmac macroname arguments...@defmacx macroname arguments...Format a description for a macro. The command is equivalent to `@deffn Macro...'. See Chapter 15 [De�nition Commands], page 121, and Section 15.3 [DefCmds in Detail], page 123.
@defmethod class method-name arguments...@defmethodx class method-name arguments...Format a description for a method in object-oriented programming. The com-mand is equivalent to `@defop Method ...'. Takes as arguments the name ofthe class of the method, the name of the method, and its arguments, if any.See Chapter 15 [De�nition Commands], page 121, and Section 15.3 [Def Cmdsin Detail], page 123.
@defop category class name arguments ...@defopx category class name arguments ...Format a description for an operation in object-oriented programming. @defoptakes as arguments the overall name of the category of operation, the name ofthe class of the operation, the name of the operation, and its arguments, if any.See Chapter 15 [De�nition Commands], page 121, and Section 15.4.5 [AbstractObjects], page 129.
@defopt option-name@defoptx option-nameFormat a description for a user option. The command is equivalent to `@defvr{User Option} ...'. See Chapter 15 [De�nition Commands], page 121, andSection 15.3 [Def Cmds in Detail], page 123.
@defspec special-form-name arguments ...@defspecx special-form-name arguments ...Format a description for a special form. The command is equivalent to `@deffn{Special Form} ...'. See Chapter 15 [De�nition Commands], page 121, andSection 15.3 [Def Cmds in Detail], page 123.
@deftp category name-of-type attributes ...@deftpx category name-of-type attributes ...Format a description for a data type. @deftp takes as arguments the category,the name of the type (which is a word like `int' or `float'), and then the namesof attributes of objects of that type. See Chapter 15 [De�nition Commands],page 121, and Section 15.4.6 [Data Types], page 131.

Appendix A: @-Command List 177

@deftypefn classification data-type name arguments ...@deftypefnx classification data-type name arguments ...Format a description for a function or similar entity that may take argumentsand that is typed. @deftypefn takes as arguments the classi�cation of entitybeing described, the type, the name of the entity, and its arguments, if any. SeeChapter 15 [De�nition Commands], page 121, and Section 15.3 [Def Cmds inDetail], page 123.
@deftypefun data-type function-name arguments ...@deftypefunx data-type function-name arguments ...Format a description for a function in a typed language. The command is equiv-alent to `@deftypefn Function ...'. See Chapter 15 [De�nition Commands],page 121, and Section 15.3 [Def Cmds in Detail], page 123.
@deftypeivar class data-type variable-name@deftypeivarx class data-type variable-nameFormat a description for a typed instance variable in object-oriented program-ming. See Chapter 15 [De�nition Commands], page 121, and Section 15.4.5[Abstract Objects], page 129.
@deftypemethod class data-type method-name arguments ...@deftypemethodx class data-type method-name arguments ...Format a description for a typed method in object-oriented programming. SeeChapter 15 [De�nition Commands], page 121, and Section 15.3 [Def Cmds inDetail], page 123.
@deftypeop category class data-type name arguments ...@deftypeopx category class data-type name arguments ...Format a description for a typed operation in object-oriented programming.See Chapter 15 [De�nition Commands], page 121, and Section 15.4.5 [AbstractObjects], page 129.
@deftypevar data-type variable-name@deftypevarx data-type variable-nameFormat a description for a variable in a typed language. The command is equiv-alent to `@deftypevr Variable ...'. See Chapter 15 [De�nition Commands],page 121, and Section 15.3 [Def Cmds in Detail], page 123.
@deftypevr classification data-type name@deftypevrx classification data-type nameFormat a description for something like a variable in a typed language|anentity that records a value. Takes as arguments the classi�cation of entity beingdescribed, the type, and the name of the entity. See Chapter 15 [De�nitionCommands], page 121, and Section 15.3 [Def Cmds in Detail], page 123.
@defun function-name arguments ...@defunx function-name arguments ...Format a description for functions. The command is equivalent to `@deffnFunction ...'. See Chapter 15 [De�nition Commands], page 121, and Sec-tion 15.3 [Def Cmds in Detail], page 123.

Appendix A: @-Command List 178

@defvar variable-name@defvarx variable-nameFormat a description for variables. The command is equivalent to `@defvrVariable ...'. See Chapter 15 [De�nition Commands], page 121, and Sec-tion 15.3 [Def Cmds in Detail], page 123.
@defvr category name@defvrx category nameFormat a description for any kind of variable. @defvr takes as arguments thecategory of the entity and the name of the entity. See Chapter 15 [De�nitionCommands], page 121, and Section 15.3 [Def Cmds in Detail], page 123.
@detailmenuAvoid makeinfo confusion stemming from the detailed node listing in a mastermenu. See Section 3.5.2 [Master Menu Parts], page 40.
@dfn{term }Highlight the introductory or de�ning use of a term. See Section 9.1.11 [@dfn],page 81.
@dircategory dirpartSpecify a part of the Info directory menu where this �le's entry should go. SeeSection 20.2.4 [Installing Dir Entries], page 169.
@direntry Begin the Info directory menu entry for this �le. Pair with @end direntry. SeeSection 20.2.4 [Installing Dir Entries], page 169.
@display Begin a kind of example. Like @example (indent text, do not �ll), but donot select a new font. Pair with @end display. See Section 10.8 [@display],page 89.
@dmn{dimension }Format a unit of measure, as in 12 pt. Causes TEX to insert a thin space before

dimension. No e�ect in Info. See Section 13.2.4 [@dmn], page 107.
@documentdescriptionSet the document description text, included in the HTML output. Pair with@end documentdescription. See Section 3.6.1 [@documentdescription],page 41.
@documentencoding encDeclare the input encoding to be enc. See Section 17.2 [@documentencoding],page 141.
@documentlanguage CCDeclare the document language as the two-character ISO-639 abbreviation CC.See Section 17.1 [@documentlanguage], page 140.
@dotaccent{c}Generate a dot accent over the character c, as in _o. See Section 13.3 [InsertingAccents], page 107.
@dots{} Insert an ellipsis: `...'. See Section 13.4.1 [@dots], page 108.

Appendix A: @-Command List 179

@email{address [, displayed-text]}Indicate an electronic mail address. See Section 9.1.15 [@email], page 82.
@emph{text }Highlight text ; text is displayed in italics in printed output, and surrounded byasterisks in Info. See Section 9.2 [Emphasizing Text], page 83.
@end environmentEnds environment, as in `@end example'. See Section 1.6 [@-commands], page 8.
@env{environment-variable }Indicate an environment variable name, such as PATH. See Section 9.1.7 [@env],page 80.
@enddots{}Generate an end-of-sentence of ellipsis, like this See Section 13.4.1[@dots{}], page 108.
@enumerate [number-or-letter]Begin a numbered list, using @item for each entry. Optionally, start list with

number-or-letter. Pair with @end enumerate. See Section 11.2 [@enumerate],page 95.
@equiv{} Indicate to the reader the exact equivalence of two forms with a glyph: `� '.See Section 13.9.6 [Equivalence], page 112.
@error{} Indicate to the reader with a glyph that the following text is an error message:` error '. See Section 13.9.5 [Error Glyph], page 112.
@evenfooting [left] @| [center] @| [right]@evenheading [left] @| [center] @| [right]Specify page footings resp. headings for even-numbered (left-hand) pages. SeeSection E.3 [How to Make Your Own Headings], page 208.
@everyfooting [left] @| [center] @| [right]@everyheading [left] @| [center] @| [right]Specify page footings resp. headings for every page. Not relevant to Info. SeeSection E.3 [How to Make Your Own Headings], page 208.
@example Begin an example. Indent text, do not �ll, and select �xed-width font. Pairwith @end example. See Section 10.3 [@example], page 86.
@exampleindent indentIndent example-like environments by indent number of spaces (perhaps 0). SeeSection 3.6.4 [Paragraph Indenting], page 43.
@exclamdown{}Produce an upside-down exclamation point. See Section 13.3 [Inserting Ac-cents], page 107.
@exdent line-of-textRemove any indentation a line might have. See Section 10.10 [Undoing theIndentation of a Line], page 90.

Appendix A: @-Command List 180

@expansion{}Indicate the result of a macro expansion to the reader with a special glyph:` 7!'. See Section 13.9.3 [7! Indicating an Expansion], page 111.
@file{filename }Highlight the name of a �le, bu�er, node, or directory. See Section 9.1.8 [@file],page 80.
@finalout Prevent TEX from printing large black warning rectangles beside over-wide lines.See Section 19.10 [Overfull hboxes], page 154.
@findex entryAdd entry to the index of functions. See Section 12.1 [De�ning the Entries ofan Index], page 100.
@flushleft@flushrightLeft justify every line but leave the right end ragged. Leave font as is. Pair with@end flushleft. @flushright analogous. See Section 10.11 [@flushleft and@flushright], page 90.
@footnote{text-of-footnote }Enter a footnote. Footnote text is printed at the bottom of the page by TEX;Info may format in either `End' node or `Separate' node style. See Section 13.10[Footnotes], page 114.
@footnotestyle styleSpecify an Info �le's footnote style, either `end' for the end node style or`separate' for the separate node style. See Section 13.10 [Footnotes], page 114.
@format Begin a kind of example. Like @display, but do not narrow the margins. Pairwith @end format. See Section 10.3 [@example], page 86.
@ftable formatting-commandBegin a two-column table, using @item for each entry. Automatically entereach of the items in the �rst column into the index of functions. Pair with @endftable. The same as @table, except for indexing. See Section 11.3.2 [@ftableand @vtable], page 97.
@group Hold text together that must appear on one printed page. Pair with @endgroup. Not relevant to Info. See Section 14.8 [@group], page 119.
@H{c} Generate the long Hungarian umlaut accent over c, as in }o.
@heading titlePrint an unnumbered section-like heading in the text, but not in the table ofcontents of a printed manual. In Info, the title is underlined with equal signs.See Section 5.8 [Section Commands], page 51.
@headings on-off-single-doubleTurn page headings on or o�, and/or specify single-sided or double-sided pageheadings for printing. See Section 3.4.6 [The @headings Command], page 39.

Appendix A: @-Command List 181

@html Enter HTML completely. Pair with @end html. See Section 16.3 [Raw Format-ter Commands], page 135.
@hyphenation{hy-phen-a-ted words }Explicitly de�ne hyphenation points. See Section 14.3 [@- and @hyphenation],page 118.
@i{text } Print text in italic font. No e�ect in Info. See Section 9.2.3 [Fonts], page 84.
@ifclear flagIf
ag is cleared, the Texinfo formatting commands format text between@ifclear flag and the following @end ifclear command. See Section 16.4[@set @clear @value], page 136.
@ifhtml@ifinfo Begin a stretch of text that will be ignored by TEX when it typesets the printedmanual. @ifhtml text appears only in the HTML output. @ifinfo outputappears in both Info and (for historical compatibility) plain text output . Pairwith @end ifhtml resp. @end ifinfo. See Chapter 16 [Conditionals], page 134.
@ifnothtml@ifnotinfo@ifnotplaintext@ifnottex@ifnotxml Begin a stretch of text that will be ignored in one output format but not theothers. The text appears in the formats not speci�ed: @ifnothtml text is omit-ted from html output, etc. The exception is @ifnotinfo text, which is omittedfrom plain text output as well as Info output. Pair with the corresponding @endifnotformat . See Chapter 16 [Conditionals], page 134.
@ifplaintextBegin a stretch of text that appears only in the plain text output. Pair with@end ifplaintext. See Chapter 16 [Conditionals], page 134.
@ifset flag If
ag is set, the Texinfo formatting commands format text between @ifset

flag and the following @end ifset command. See Section 16.4 [@set @clear@value], page 136.
@iftex Begin a stretch of text that will not appear in the Info �le, but will be processedonly by TEX. Pair with @end iftex. See Chapter 16 [Conditionally VisibleText], page 134.
@ifxml Begin a stretch of text that appears only in the XML output. Pair with @endifxml. See Chapter 16 [Conditionals], page 134.
@ignore Begin a stretch of text that will not appear in either the Info �le or the printedoutput. Pair with @end ignore. See Section 1.8 [Comments and Ignored Text],page 10.

Appendix A: @-Command List 182

@image{filename , [width], [height], [alt], [ext]}Include graphics image in external �lename scaled to the given width and/or
height, using alt text and looking for `filename .ext ' in HTML. See Sec-tion 13.11 [Images], page 115.

@include filenameIncorporate the contents of the �le �lename into the Info �le or printed docu-ment. See Appendix D [Include Files], page 202.
@inforef{node-name, [entry-name], info-file-name }Make a cross reference to an Info �le for which there is no printed manual. SeeSection 8.7 [Cross references using @inforef], page 73.
\input macro-definitions-fileUse the speci�ed macro de�nitions �le. This command is used only in the�rst line of a Texinfo �le to cause TEX to make use of the `texinfo' macrode�nitions �le. The backslash in \input is used instead of an @ because TEXdoes not recognize @ until after it has read the de�nitions �le. See Section 3.2[Texinfo File Header], page 30.
@item Indicate the beginning of a marked paragraph for @itemize and @enumerate;indicate the beginning of the text of a �rst column entry for @table, @ftable,and @vtable. See Chapter 11 [Lists and Tables], page 93.
@itemize mark-generating-character-or-commandProduce a sequence of indented paragraphs, with a mark inside the left marginat the beginning of each paragraph. Pair with @end itemize. See Section 11.1[@itemize], page 93.
@itemx Like @item but do not generate extra vertical space above the item text. SeeSection 11.3.3 [@itemx], page 98.
@kbd{keyboard-characters }Indicate text that is characters of input to be typed by users. See Section 9.1.2[@kbd], page 77.
@kbdinputstyle styleSpecify when @kbd should use a font distinct from @code. See Section 9.1.2[@kbd], page 77.
@key{key-name}Indicate a name for a key on a keyboard. See Section 9.1.3 [@key], page 78.
@kindex entryAdd entry to the index of keys. See Section 12.1 [De�ning the Entries of anIndex], page 100.
@L{}@l{} Generate the uppercase and lowercase Polish suppressed-L letters, respectively: L, l.
@lisp Begin an example of Lisp code. Indent text, do not �ll, and select �xed-widthfont. Pair with @end lisp. See Section 10.6 [@lisp], page 88.

Appendix A: @-Command List 183

@lowersectionsChange subsequent chapters to sections, sections to subsections, and so on. SeeSection 5.12 [@raisesections and @lowersections], page 53.
@macro macroname{params}De�ne a new Texinfo command @macroname{params}. Only supported bymakeinfo and texi2dvi. See Section 18.1 [De�ning Macros], page 142.
@majorheading titlePrint a chapter-like heading in the text, but not in the table of contents of aprinted manual. Generate more vertical whitespace before the heading thanthe @chapheading command. In Info, the chapter heading line is underlinedwith asterisks. See Section 5.6 [@majorheading and @chapheading], page 50.
@math{mathematical-expression }Format a mathematical expression. See Section 13.8 [@math: Inserting Mathe-matical Expressions], page 110.
@menu Mark the beginning of a menu of nodes in Info. No e�ect in a printed manual.Pair with @end menu. See Chapter 7 [Menus], page 61.
@minus{} Generate a minus sign, `�'. See Section 13.7 [@minus], page 109.
@multitable column-width-specBegin a multi-column table. Pair with @end multitable. See Section 11.4.1[Multitable Column Widths], page 98.
@need n Start a new page in a printed manual if fewer than n mils (thousandths of aninch) remain on the current page. See Section 14.9 [@need], page 120.
@node name, next , previous , upDe�ne the beginning of a new node in Info, and serve as a locator for referencesfor TEX. See Section 6.3 [@node], page 56.
@noindent Prevent text from being indented as if it were a new paragraph. See Sec-tion 10.12 [@noindent], page 91.
@novalidateSuppress validation of node references, omit creation of auxiliary �les with TEX.Use before @setfilename. See Section 20.1.4 [Pointer Validation], page 162.
@O{}@o{} Generate the uppercase and lowercase O-with-slash letters, respectively: �, �.
@oddfooting [left] @| [center] @| [right]@oddheading [left] @| [center] @| [right]Specify page footings resp. headings for odd-numbered (right-hand) pages. SeeSection E.3 [How to Make Your Own Headings], page 208.
@OE{}@oe{} Generate the uppercase and lowercase OE ligatures, respectively: �, �. SeeSection 13.3 [Inserting Accents], page 107.

Appendix A: @-Command List 184

@option{option-name }Indicate a command-line option, such as `-l' or `--help'. See Section 9.1.10[@option], page 81.
@page Start a new page in a printed manual. No e�ect in Info. See Section 14.7[@page], page 119.
@pagesizes [width][, height]Change page dimensions. See Section 19.13 [pagesizes], page 156.
@paragraphindent indentIndent paragraphs by indent number of spaces (perhaps 0); preserve source �leindentation if indent is asis. See Section 3.6.3 [Paragraph Indenting], page 43.
@pindex entryAdd entry to the index of programs. See Section 12.1 [De�ning the Entries ofan Index], page 100.
@point{} Indicate the position of point in a bu�er to the reader with a glyph: `?'. SeeSection 13.9.7 [Indicating Point in a Bu�er], page 113.
@pounds{} Generate the pounds sterling currency sign. See Section 13.6 [@pounds{}],page 109.
@print{} Indicate printed output to the reader with a glyph: ` a '. See Section 13.9.4[Print Glyph], page 112.
@printindex index-namePrint an alphabetized two-column index in a printed manual or generate analphabetized menu of index entries for Info. See Section 4.1 [Printing Indices& Menus], page 45.
@pxref{node-name, [entry], [topic-or-title], [info-file], [manual]}Make a reference that starts with a lower case `see' in a printed manual. Usewithin parentheses only. Do not follow command with a punctuation mark|the Info formatting commands automatically insert terminating punctuationas needed. Only the �rst argument is mandatory. See Section 8.6 [@pxref],page 72.
@questiondown{}Generate an upside-down question mark. See Section 13.3 [Inserting Accents],page 107.
@quotationNarrow the margins to indicate text that is quoted from another real or imag-inary work. Write command on a line of its own. Pair with @end quotation.See Section 10.2 [@quotation], page 86.
@r{text } Print text in roman font. No e�ect in Info. See Section 9.2.3 [Fonts], page 84.
@raisesectionsChange subsequent sections to chapters, subsections to sections, and so on. SeeSection 5.12 [@raisesections and @lowersections], page 53.

Appendix A: @-Command List 185

@ref{node-name, [entry], [topic-or-title], [info-file], [manual]}Make a reference. In a printed manual, the reference does not start with a`See'. Follow command with a punctuation mark. Only the �rst argument ismandatory. See Section 8.5 [@ref], page 71.
@refill In Info, re�ll and indent the paragraph after all the other processing has beendone. No e�ect on TEX, which always re�lls. This command is no longerneeded, since all formatters now automatically re�ll. See Appendix G [Re�llingParagraphs], page 218.
@result{} Indicate the result of an expression to the reader with a special glyph: `)'. SeeSection 13.9.2 [@result], page 111.
@ringaccent{c}Generate a ring accent over the next character, as in �o. See Section 13.3 [In-serting Accents], page 107.
@samp{text }Highlight text that is a literal example of a sequence of characters. Used forsingle characters, for statements, and often for entire shell commands. SeeSection 9.1.4 [@samp], page 78.
@sc{text } Set text in a printed output in the small caps font and set text in the Info�le in uppercase letters. See Section 9.2.2 [Smallcaps], page 83.
@section titleBegin a section within a chapter. In a printed manual, the section title isnumbered and appears in the table of contents. In Info, the title is underlinedwith equal signs. See Section 5.7 [@section], page 51.
@set flag [string]Make
ag active, causing the Texinfo formatting commands to format text be-tween subsequent pairs of @ifset flag and @end ifset commands. Optionally,set value of
ag to string. See Section 16.4 [@set @clear @value], page 136.
@setchapternewpage on-off-oddSpecify whether chapters start on new pages, and if so, whether on odd-numbered (right-hand) new pages. See Section 3.6.2 [@setchapternewpage],page 42.
@setcontentsaftertitlepagePut the table of contents after the `@end titlepage' even if the @contentscommand is not there. See Section 4.2 [Contents], page 46.
@setfilename info-file-nameProvide a name to be used by the Info �le. This command is essential forTEX formatting as well, even though it produces no output. See Section 3.2.3[@setfilename], page 31.
@setshortcontentsaftertitlepagePlace the short table of contents after the `@end titlepage' command even ifthe @shortcontents command is not there. See Section 4.2 [Contents], page 46.

Appendix A: @-Command List 186

@settitle titleProvide a title for page headers in a printed manual, and the default documentdescription for HTML `<head>'. See Section 3.2.4 [@settitle], page 32.
@shortcontentsPrint a short table of contents. Not relevant to Info, which uses menus ratherthan tables of contents. A synonym for @summarycontents. See Section 4.2[Generating a Table of Contents], page 46.
@shorttitlepage titleGenerate a minimal title page. See Section 3.4.1 [@titlepage], page 35.
@smallbookCause TEX to produce a printed manual in a 7 by 9.25 inch format rather thanthe regular 8.5 by 11 inch format. See Section 19.11 [Printing Small Books],page 155. Also, see Section 10.7 [small], page 89.
@smalldisplayBegin a kind of example. Like @smallexample (narrow margins, no �lling),but do not select the �xed-width font. Pair with @end smalldisplay. SeeSection 10.7 [small], page 89.
@smallexampleIndent text to indicate an example. Do not �ll, select �xed-width font, nar-row the margins. In printed manuals, print text in a smaller font than with@example. Pair with @end smallexample. See Section 10.7 [small], page 89.
@smallformatBegin a kind of example. Like @smalldisplay, but do not narrow the margins.Pair with @end smallformat. See Section 10.7 [small], page 89.
@smalllispBegin an example of Lisp code. Same as @smallexample. Pair with @endsmalllisp. See Section 10.7 [small], page 89.
@sp n Skip n blank lines. See Section 14.6 [@sp], page 119.
@ss{} Generate the German sharp-S es-zet letter, �. See Section 13.3 [Inserting Ac-cents], page 107.
@strong {text }Emphasize text by typesetting it in a bold font for the printed manual and bysurrounding it with asterisks for Info. See Section 9.2.1 [Emphasizing Text],page 83.
@subheading titlePrint an unnumbered subsection-like heading in the text, but not in the table ofcontents of a printed manual. In Info, the title is underlined with hyphens. SeeSection 5.10 [@unnumberedsubsec @appendixsubsec @subheading], page 52.
@subsection titleBegin a subsection within a section. In a printed manual, the subsection title isnumbered and appears in the table of contents. In Info, the title is underlinedwith hyphens. See Section 5.9 [@subsection], page 51.

Appendix A: @-Command List 187

@subsubheading titlePrint an unnumbered subsubsection-like heading in the text, but not in thetable of contents of a printed manual. In Info, the title is underlined withperiods. See Section 5.11 [The `subsub' Commands], page 52.
@subsubsection titleBegin a subsubsection within a subsection. In a printed manual, the subsubsec-tion title is numbered and appears in the table of contents. In Info, the title isunderlined with periods. See Section 5.11 [The `subsub' Commands], page 52.
@subtitle titleIn a printed manual, set a subtitle in a normal sized font
ush to the right-hand side of the page. Not relevant to Info, which does not have title pages.See Section 3.4.3 [@title @subtitle and @author Commands], page 36.
@summarycontentsPrint a short table of contents. Not relevant to Info, which uses menus ratherthan tables of contents. A synonym for @shortcontents. See Section 4.2[Generating a Table of Contents], page 46.
@syncodeindex from-index into-indexMerge the index named in the �rst argument into the index named in thesecond argument, printing the entries from the �rst index in @code font. SeeSection 12.4 [Combining Indices], page 102.
@synindex from-index into-indexMerge the index named in the �rst argument into the index named in the secondargument. Do not change the font of from-index entries. See Section 12.4[Combining Indices], page 102.
@t{text } Print text in a fixed-width, typewriter-like font. No e�ect in Info. See Sec-tion 9.2.3 [Fonts], page 84.
@tab Separate columns in a multitable. See Section 11.4.2 [Multitable Rows], page 99.
@table formatting-commandBegin a two-column table, using @item for each entry. Write each �rst columnentry on the same line as @item. First column entries are printed in the fontresulting from formatting-command. Pair with @end table. See Section 11.3[Making a Two-column Table], page 96. Also see Section 11.3.2 [@ftable and@vtable], page 97, and Section 11.3.3 [@itemx], page 98.
@TeX{} Insert the logo TEX. See Section 13.5 [Inserting TEX and c
], page 109.
@tex Enter TEX completely. Pair with @end tex. See Section 16.3 [Raw FormatterCommands], page 135.
@thischapter@thischaptername@thisfile@thispage@thistitleOnly allowed in a heading or footing. Stands for the number and name of thecurrent chapter (in the format `Chapter 1: Title'), the chapter name only, the

Appendix A: @-Command List 188

�lename, the current page number, and the title of the document, respectively.See Section E.3 [How to Make Your Own Headings], page 208.
@tie{} Generate a normal interword space at which a line break is not allowed. SeeSection 14.5 [@tie{}], page 119.
@tieaccent{cc }Generate a tie-after accent over the next two characters cc, as in `�oo'. SeeSection 13.3 [Inserting Accents], page 107.
@tindex entryAdd entry to the index of data types. See Section 12.1 [De�ning the Entries ofan Index], page 100.
@title title In a printed manual, set a title
ush to the left-hand side of the page in alarger than normal font and underline it with a black rule. Not relevant to Info,which does not have title pages. See Section 3.4.3 [The @title @subtitle and@author Commands], page 36.
@titlefont{text }In a printed manual, print text in a larger than normal font. Not relevantto Info, which does not have title pages. See Section 3.4.2 [The @titlefont@center and @sp Commands], page 36.
@titlepageIndicate to Texinfo the beginning of the title page. Write command on a lineof its own. Pair with @end titlepage. Nothing between @titlepage and @endtitlepage appears in Info. See Section 3.4.1 [@titlepage], page 35.
@today{} Insert the current date, in `1 Jan 1900' style. See Section E.3 [How to MakeYour Own Headings], page 208.
@top title In a Texinfo �le to be formatted with makeinfo, identify the topmost @nodein the �le, which must be written on the line immediately preceding the @topcommand. Used for makeinfo's node pointer insertion feature. The title isunderlined with asterisks. Both the @node line and the @top line normallyshould be enclosed by @ifnottex and @end ifnottex. In TEX and texinfo-format-buffer, the @top command is merely a synonym for @unnumbered. SeeSection 6.4 [Creating Pointers with makeinfo], page 60.
@u{c}@ubaraccent{c}@udotaccent{c}Generate a breve, underbar, or underdot accent, respectively, over or under thecharacter c, as in �o, o�, o. . See Section 13.3 [Inserting Accents], page 107.
@unnumbered titleIn a printed manual, begin a chapter that appears without chapter numbers ofany kind. The title appears in the table of contents of a printed manual. InInfo, the title is underlined with asterisks. See Section 5.5 [@unnumbered and@appendix], page 50.

Appendix A: @-Command List 189

@unnumberedsec titleIn a printed manual, begin a section that appears without section numbers ofany kind. The title appears in the table of contents of a printed manual. In Info,the title is underlined with equal signs. See Section 5.8 [Section Commands],page 51.
@unnumberedsubsec titleIn a printed manual, begin an unnumbered subsection within a chapter.The title appears in the table of contents of a printed manual. In Info,the title is underlined with hyphens. See Section 5.10 [@unnumberedsubsec@appendixsubsec @subheading], page 52.
@unnumberedsubsubsec titleIn a printed manual, begin an unnumbered subsubsection within a chapter. Thetitle appears in the table of contents of a printed manual. In Info, the title isunderlined with periods. See Section 5.11 [The `subsub' Commands], page 52.
@uref{url [, displayed-text][, replacement }De�ne a cross reference to an external uniform resource locator for the WorldWide Web. See Section 8.8 [@uref], page 74.
@url{url } Indicate text that is a uniform resource locator for the World Wide Web. SeeSection 9.1.14 [@url], page 82.
@v{c} Generate check accent over the character c, as in �o. See Section 13.3 [InsertingAccents], page 107.
@value{flag }Replace
ag with the value to which it is set by @set flag . See Section 16.4[@set @clear @value], page 136.
@var{metasyntactic-variable }Highlight a metasyntactic variable, which is something that stands for anotherpiece of text. See Section 9.1.6 [Indicating Metasyntactic Variables], page 79.
@verb{delim literal delim }Output literal , delimited by the single character delim, exactly as is (in the�xed-width font), including any whitespace or Texinfo special characters. SeeSection 9.1.5 [verb], page 79.
@verbatim Output the text of the environment exactly as is (in the �xed-width font). Pairwith @end verbatim. See Section 10.4 [verbatim], page 87.
@verbatiminclude filenameOutput the contents of �lename exactly as is (in the �xed-width font). SeeSection 10.5 [verbatiminclude], page 88.
@vindex entryAdd entry to the index of variables. See Section 12.1 [De�ning the Entries ofan Index], page 100.

Appendix A: @-Command List 190

@vskip amountIn a printed manual, insert whitespace so as to push text on the remainder ofthe page towards the bottom of the page. Used in formatting the copyrightpage with the argument `0pt plus 1filll'. (Note spelling of `filll'.) @vskipmay be used only in contexts ignored for Info. See Section 3.4.4 [Copyright],page 37.
@vtable formatting-commandBegin a two-column table, using @item for each entry. Automatically entereach of the items in the �rst column into the index of variables. Pair with @endvtable. The same as @table, except for indexing. See Section 11.3.2 [@ftableand @vtable], page 97.
@w{text } Prevent text from being split across two lines. Do not end a paragraph thatuses @w with an @refill command. See Section 14.4 [@w], page 118.
@xref{node-name, [entry], [topic-or-title], [info-file], [manual]}Make a reference that starts with `See' in a printed manual. Follow commandwith a punctuation mark. Only the �rst argument is mandatory. See Section 8.3[@xref], page 67.

Appendix B: Tips and Hints 191

Appendix B Tips and Hints

Here are some tips for writing Texinfo documentation:
� Write in the present tense, not in the past or the future.
� Write actively! For example, write \We recommend that . . . " rather than \It is rec-ommended that . . . ".
� Use 70 or 72 as your �ll column. Longer lines are hard to read.
� Include a copyright notice and copying permissions.

Index, Index, Index!

Write many index entries, in di�erent ways. Readers like indices; they are helpful andconvenient.Although it is easiest to write index entries as you write the body of the text, somepeople prefer to write entries afterwards. In either case, write an entry before the paragraphto which it applies. This way, an index entry points to the �rst page of a paragraph that issplit across pages.Here are more hints we have found valuable:
� Write each index entry di�erently, so each entry refers to a di�erent place in the doc-ument.
� Write index entries only where a topic is discussed signi�cantly. For example, it is notuseful to index \debugging information" in a chapter on reporting bugs. Someone whowants to know about debugging information will certainly not �nd it in that chapter.
� Consistently capitalize the �rst word of every concept index entry, or else consistentlyuse lower case. Terse entries often call for lower case; longer entries for capitalization.Whichever case convention you use, please use one or the other consistently! Mixingthe two styles looks bad.
� Always capitalize or use upper case for those words in an index for which this is proper,such as names of countries or acronyms. Always use the appropriate case for case-sensitive names, such as those in C or Lisp.
� Write the indexing commands that refer to a whole section immediately after thesection command, and write the indexing commands that refer to a paragraph beforethat paragraph.In the example that follows, a blank line comes after the index entry for \Leaping":

@section The Dog and the Fox@cindex Jumping, in general@cindex Leaping
@cindex Dog, lazy, jumped over@cindex Lazy dog jumped over@cindex Fox, jumps over dog@cindex Quick fox jumps over dogThe quick brown fox jumps over the lazy dog.

Appendix B: Tips and Hints 192

(Note that the example shows entries for the same concept that are written in di�erentways|`Lazy dog', and `Dog, lazy'|so readers can look up the concept in di�erentways.)
Blank Lines

� Insert a blank line between a sectioning command and the �rst following sentence orparagraph, or between the indexing commands associated with the sectioning com-mand and the �rst following sentence or paragraph, as shown in the tip on indexing.Otherwise, a formatter may fold title and paragraph together.� Always insert a blank line before an @table command and after an @end table com-mand; but never insert a blank line after an @table command or before an @end tablecommand.For example,Types of fox:
@table @samp@item QuickJump over lazy dogs.
@item BrownAlso jump over lazy dogs.@end table
@noindentOn the other hand, ...Insert blank lines before and after @itemize . . . @end itemize and @enumerate . . .@end enumerate in the same way.

Complete Phrases

Complete phrases are easier to read than . . .� Write entries in an itemized list as complete sentences; or at least, as complete phrases.Incomplete expressions . . . awkward . . . like this.� Write the prefatory sentence or phrase for a multi-item list or table as a completeexpression. Do not write \You can set:"; instead, write \You can set these variables:".The former expression sounds cut o�.
Editions, Dates and Versions

Include edition numbers, version numbers, and dates in the @copying text (for peo-ple reading the Texinfo �le, and for the legal copyright in the output �les). Then use@insertcopying in the @titlepage section (for people reading the printed output) andthe Top node (for people reading the online output).It is easiest to do this using @set and @value. See Section 16.4.3 [@value Example],page 138, and Section C.2 [GNU Sample Texts], page 197.

Appendix B: Tips and Hints 193

De�nition Commands

De�nition commands are @deffn, @defun, @defmac, and the like, and enable you towrite descriptions in a uniform format.
� Write just one de�nition command for each entity you de�ne with a de�nition com-mand. The automatic indexing feature creates an index entry that leads the reader tothe de�nition.
� Use @table . . . @end table in an appendix that contains a summary of functions, not@deffn or other de�nition commands.

Capitalization

� Capitalize \Texinfo"; it is a name. Do not write the `x' or `i' in upper case.
� Capitalize \Info"; it is a name.
� Write TEX using the @TeX{} command. Note the uppercase `T' and `X'. This commandcauses the formatters to typeset the name according to the wishes of Donald Knuth,who wrote TEX.

Spaces

Do not use spaces to format a Texinfo �le, except inside of @example . . . @end exampleand similar commands.For example, TEX �lls the following:
@kbd{C-x v}@kbd{M-x vc-next-action}Perform the next logical operationon the version-controlled filecorresponding to the current buffer.

so it looks like this:
C-x v M-x vc-next-action Perform the next logical operation on the version-controlled �le corresponding to the current bu�er.

In this case, the text should be formatted with @table, @item, and @itemx, to create atable.
@code, @samp, @var, and ` --- '

� Use @code around Lisp symbols, including command names. For example,
The main function is @code{vc-next-action}, ...

� Avoid putting letters such as `s' immediately after an `@code'. Such letters look bad.
� Use @var around meta-variables. Do not write angle brackets around them.
� Use three hyphens in a row, `---', to indicate a long dash. TEX typesets these as along dash and the Info formatters reduce three hyphens to two.

Appendix B: Tips and Hints 194

Periods Outside of Quotes

Place periods and other punctuation marks outside of quotations, unless the punctu-ation is part of the quotation. This practice goes against publishing conventions in theUnited States, but enables the reader to distinguish between the contents of the quotationand the whole passage.For example, you should write the following sentence with the period outside the endquotation marks:
Evidently, `au' is an abbreviation for ``author''.since `au' does not serve as an abbreviation for `author.' (with a period following the word).

Introducing New Terms

� Introduce new terms so that a reader who does not know them can understand themfrom context; or write a de�nition for the term.For example, in the following, the terms \check in", \register" and \delta" are allappearing for the �rst time; the example sentence should be rewritten so they areunderstandable.The major function assists you in checking in a �le to your version controlsystem and registering successive sets of changes to it as deltas.
� Use the @dfn command around a word being introduced, to indicate that the readershould not expect to know the meaning already, and should expect to learn the meaningfrom this passage.

@pxref

Absolutely never use @pxref except in the special context for which it is designed: insideparentheses, with the closing parenthesis following immediately after the closing brace. Oneformatter automatically inserts closing punctuation and the other does not. This meansthat the output looks right both in printed output and in an Info �le, but only when thecommand is used inside parentheses.
Invoking from a Shell

You can invoke programs such as Emacs, GCC, and gawk from a shell. The documen-tation for each program should contain a section that describes this. Unfortunately, if thenode names and titles for these sections are all di�erent, they are di�cult for users to �nd.So, there is a convention to name such sections with a phrase beginning with the word`Invoking', as in `Invoking Emacs'; this way, users can �nd the section easily.
ANSI C Syntax

When you use @example to describe a C function's calling conventions, use the ANSIC syntax, like this:

Appendix B: Tips and Hints 195

void dld_init (char *@var{path});And in the subsequent discussion, refer to the argument values by writing the same argumentnames, again highlighted with @var.Avoid the obsolete style that looks like this:
#include <dld.h>
dld_init (path)char *path;Also, it is best to avoid writing #include above the declaration just to indicate thatthe function is declared in a header �le. The practice may give the misimpression that the#include belongs near the declaration of the function. Either state explicitly which header�le holds the declaration or, better yet, name the header �le used for a group of functionsat the beginning of the section that describes the functions.

Bad Examples

Here are several examples of bad writing to avoid:In this example, say, \ . . . you must @dfn{check in} the new version." That
owsbetter.When you are done editing the �le, you must perform a @dfn{check in}.In the following example, say, \. . . makes a uni�ed interface such as VC mode possible."SCCS, RCS and other version-control systems all perform similar functions inbroadly similar ways (it is this resemblance which makes a uni�ed control modelike this possible).And in this example, you should specify what `it' refers to:If you are working with other people, it assists in coordinating everyone'schanges so they do not step on each other.
And Finally . . .

� Pronounce TEX as if the `X' were a Greek `chi', as the last sound in the name `Bach'.But pronounce Texinfo as in `speck': \teckinfo".
� Write notes for yourself at the very end of a Texinfo �le after the @bye. None of theformatters process text after the @bye; it is as if the text were within @ignore . . . @endignore.

Appendix C: Sample Texinfo Files 196

Appendix C Sample Texinfo Files

The �rst example is from the �rst chapter (see Section 1.11 [Short Sample], page 12),given here in its entirety, without commentary. The second includes the full texts to beused in GNU manuals.
C.1 Short Sample

Here is a complete, short sample Texinfo �le, without any commentary. You can seethis �le, with comments, in the �rst chapter. See Section 1.11 [Short Sample], page 12.In a nutshell: The makeinfo program transforms a Texinfo source �le such as this intoan Info �le or HTML; and TEX typesets it for a printed manual.
\input texinfo @c -*-texinfo-*-@c %**start of header@setfilename sample.info@settitle Sample Manual 1.0@c %**end of header
@copyingThis is a short example of a complete Texinfo file.
Copyright (C) 2003 Free Software Foundation, Inc.@end copying
@titlepage@title Sample Title@page@vskip 0pt plus 1filll@insertcopying@end titlepage
@c Output the table of the contents at the beginning.@contents
@ifnottex@node Top@top GNU Sample
@insertcopying@end ifnottex
@menu* First Chapter:: The first chapter is theonly chapter in this sample.* Index:: Complete index.

Appendix C: Sample Texinfo Files 197

@end menu

@node First Chapter@chapter First Chapter
@cindex chapter, first
This is the first chapter.@cindex index entry, another
Here is a numbered list.
@enumerate@itemThis is the first item.
@itemThis is the second item.@end enumerate

@node Index@unnumbered Index
@printindex cp
@bye

C.2 GNU Sample Texts
Following is a sample Texinfo document with the full texts that should be used in GNUmanuals.As well as the legal texts, it also serves as a practical example of how many elements in aGNU system can a�ect the manual. If you're not familiar with all these di�erent elements,don't worry. They're not required and a perfectly good manual can be written withoutthem. They're included here nonetheless because many manuals do (or could) bene�t fromthem.See Section 1.11 [Short Sample], page 12, for a minimal example of a Texinfo �le. SeeChapter 3 [Beginning a File], page 29, for a full explanation of that minimal example.Here are some notes on the example:

� The `$Id:' comment is for the CVS (see section \Overview" in Concurrent Versions
System) or RCS (see rcsintro(1)) version control systems, which expand it into a stringsuch as:

$Id: texinfo.txi,v 1.29 2003/02/04 15:17:21 karl Exp $

Appendix C: Sample Texinfo Files 198

(This is useful in all sources that use version control, not just manuals.) You maywish to include the `$Id:' comment in the @copying text, if you want a completelyunambiguous reference to the documentation version.
� The `version.texi' in the @include command is maintained automatically by Au-tomake (see section \Introduction" in GNU Automake). It sets the `VERSION' and`UPDATED' values used elsewhere. If your distribution doesn't use Automake, but youdo use Emacs, you may �nd the time-stamp.el package helpful (see section \TimeStamps" in The GNU Emacs Manual).
� The @syncodeindex command re
ects the recommendation to use only one index wherepossible, to make it easier for readers to look up index entries.
� The @dircategory is for constructing the Info directory. See Section 20.2.4 [InstallingDir Entries], page 169, which includes a variety of recommended category names.
� The `Invoking' node is a GNU standard to help users �nd the basic information aboutcommand-line usage of a given program. See section \Manual Structure Details" in

GNU Coding Standards.
� It is best to include the entire GNU Free Documentation License in a GNU manual,unless the manual is only a few pages long. Of course this sample is even shorter thanthat, but it includes the FDL anyway in order to show one conventional way to do so.The `fdl.texi' �le is available on the GNU machines and in the Texinfo and otherGNU source distributions.The FDL provides for omitting itself under certain conditions, but in that case thesample texts given here have to be modi�ed. See Section J.1 [GNU Free DocumentationLicense], page 221.
� If your manual has invariant sections (again, see the license itself for details), thendon't forget to change the text here accordingly.
� For documents that express your personal views, feelings or experiences, it is moreappropriate to use a license permitting only verbatim copying, rather than the FDL.See Section C.3 [Verbatim Copying License], page 200.

Here is the sample document:
\input texinfo @c -*-texinfo-*-@comment $Id: texinfo.txi,v 1.29 2003/02/04 15:17:21 karl Exp $@comment %**start of header@setfilename sample.info@include version.texi@settitle GNU Sample @value{VERSION}@syncodeindex pg cp@comment %**end of header@copyingThis manual is for GNU Sample(version @value{VERSION}, @value{UPDATED}),which is an example in the Texinfo documentation.
Copyright @copyright{} 2003 Free Software Foundation, Inc.

Appendix C: Sample Texinfo Files 199

@quotationPermission is granted to copy, distribute and/or modify this documentunder the terms of the GNU Free Documentation License, Version 1.1 orany later version published by the Free Software Foundation; with noInvariant Sections, with the Front-Cover Texts being ``A GNU Manual,''and with the Back-Cover Texts as in (a) below. A copy of thelicense is included in the section entitled ``GNU Free DocumentationLicense.''
(a) The FSF's Back-Cover Text is: ``You have freedom to copy and modifythis GNU Manual, like GNU software. Copies published by the FreeSoftware Foundation raise funds for GNU development.''@end quotation@end copying
@dircategory Texinfo documentation system@direntry* sample: (sample)Invoking sample.@end direntry
@titlepage@title GNU Sample@subtitle for version @value{VERSION}, @value{UPDATED}@author A.U. Thor (@email{bug-texinfo@@gnu.org})@page@vskip 0pt plus 1filll@insertcopying@end titlepage
@contents
@ifnottex@node Top@top GNU Sample
@insertcopying@end ifnottex
@menu* Invoking sample::* Copying This Manual::* Index::@end menu

@node Invoking sample@chapter Invoking sample

Appendix C: Sample Texinfo Files 200

@pindex sample@cindex invoking @command{sample}
This is a sample manual. There is no sample program toinvoke, but if there was, you could see its basic usageand command line options here.

@node Copying This Manual@appendix Copying This Manual
@menu* GNU Free Documentation License:: License for copying this manual.@end menu
@include fdl.texi

@node Index@unnumbered Index
@printindex cp
@bye
C.3 Verbatim Copying License

For software manuals and other documentation, it is important to use a license per-mitting free redistribution and updating, so that when a free program is changed, thedocumentation can be updated as well.On the other hand, for documents that express your personal views, feelings or expe-riences, it is more appropriate to use a license permitting only verbatim copying.Here is sample text for such a license permitting verbatim copying only. This is justthe license text itself. For a complete sample document, see the previous sections.@copyingThis document is a sample for allowing verbatim copying only.
Copyright @copyright{} 2003 Free Software Foundation, Inc.
@quotationPermission is granted to make and distribute verbatim copiesof this entire document without royalty provided thecopyright notice and this permission notice are preserved.@end quotation@end copying

Appendix C: Sample Texinfo Files 201

C.4 All-permissive Copying License
For software manuals and other documentation, it is important to use a license per-mitting free redistribution and updating, so that when a free program is changed, thedocumentation can be updated as well.On the other hand, for small supporting �les, short manuals (under 300 lines long) andrough documentation (README �les, INSTALL �les, etc.), the full FDL would be overkill.They can use a simple all-permissive license.Here is sample text for such an all-permissive license. This is just the license text itself.For a complete sample document, see the previous sections.
Copyright c
 2003 Free Software Foundation, Inc.
Copying and distribution of this file, with or without modification,are permitted in any medium without royalty provided the copyrightnotice and this notice are preserved.

Appendix D: Include Files 202

Appendix D Include Files

When TEX or an Info formatting command sees an @include command in a Texinfo�le, it processes the contents of the �le named by the command and incorporates them intothe DVI or Info �le being created. Index entries from the included �le are incorporated intothe indices of the output �le.Include �les let you keep a single large document as a collection of conveniently smallparts.
D.1 How to Use Include Files

To include another �le within a Texinfo �le, write the @include command at thebeginning of a line and follow it on the same line by the name of a �le to be included. Forexample:
@include buffers.texiThe name of the �le is taken literally, with a single exception: @value{var } referencesare expanded. This makes it possible to reliably include �les in other directories in adistribution. See Section 10.5 [@verbatiminclude], page 88, for an example.An included �le should simply be a segment of text that you expect to be included as isinto the overall or outer Texinfo �le; it should not contain the standard beginning and endparts of a Texinfo �le. In particular, you should not start an included �le with a line saying`\input texinfo'; if you do, that phrase is inserted into the output �le as is. Likewise, youshould not end an included �le with an @bye command; nothing after @bye is formatted.In the past, you were required to write an @setfilename line at the beginning of anincluded �le, but no longer. Now, it does not matter whether you write such a line. If an@setfilename line exists in an included �le, it is ignored.Conventionally, an included �le begins with an @node line that is followed by an@chapter line. Each included �le is one chapter. This makes it easy to use the regularnode and menu creating and updating commands to create the node pointers and menuswithin the included �le. However, the simple Emacs node and menu creating and updatingcommands do not work with multiple Texinfo �les. Thus you cannot use these commandsto �ll in the `Next', `Previous', and `Up' pointers of the @node line that begins the included�le. Also, you cannot use the regular commands to create a master menu for the whole �le.Either you must insert the menus and the `Next', `Previous', and `Up' pointers by hand, oryou must use the GNU Emacs Texinfo mode command, texinfo-multiple-files-update,that is designed for @include �les.

D.2 texinfo-multiple-files-update

GNU Emacs Texinfo mode provides the texinfo-multiple-files-update command.This command creates or updates `Next', `Previous', and `Up' pointers of included �les aswell as those in the outer or overall Texinfo �le, and it creates or updates a main menuin the outer �le. Depending whether you call it with optional arguments, the commandupdates only the pointers in the �rst @node line of the included �les or all of them:

Appendix D: Include Files 203

M-x texinfo-multiple-files-updateCalled without any arguments:
� Create or update the `Next', `Previous', and `Up' pointers of the �rst @nodeline in each �le included in an outer or overall Texinfo �le.
� Create or update the `Top' level node pointers of the outer or overall �le.
� Create or update a main menu in the outer �le.

C-u M-x texinfo-multiple-files-updateCalled with C-u as a pre�x argument:
� Create or update pointers in the �rst @node line in each included �le.
� Create or update the `Top' level node pointers of the outer �le.
� Create and insert a master menu in the outer �le. The master menu ismade from all the menus in all the included �les.

C-u 8 M-x texinfo-multiple-files-updateCalled with a numeric pre�x argument, such as C-u 8:
� Create or update all the `Next', `Previous', and `Up' pointers of all theincluded �les.
� Create or update all the menus of all the included �les.
� Create or update the `Top' level node pointers of the outer or overall �le.
� And then create a master menu in the outer �le. This is similar to invokingtexinfo-master-menu with an argument when you are working with justone �le.

Note the use of the pre�x argument in interactive use: with a regular pre�x argument,just C-u, the texinfo-multiple-files-update command inserts a master menu; with anumeric pre�x argument, such as C-u 8, the command updates every pointer and menu in
all the �les and then inserts a master menu.
D.3 Include Files Requirements

If you plan to use the texinfo-multiple-files-update command, the outer Texinfo�le that lists included �les within it should contain nothing but the beginning and end partsof a Texinfo �le, and a number of @include commands listing the included �les. It shouldnot even include indices, which should be listed in an included �le of their own.
Moreover, each of the included �les must contain exactly one highest level node (con-ventionally, @chapter or equivalent), and this node must be the �rst node in the included�le. Furthermore, each of these highest level nodes in each included �le must be at the samehierarchical level in the �le structure. Usually, each is an @chapter, an @appendix, or an@unnumbered node. Thus, normally, each included �le contains one, and only one, chapteror equivalent-level node.
The outer �le should contain only one node, the `Top' node. It should not contain anynodes besides the single `Top' node. The texinfo-multiple-files-update command willnot process them.

Appendix D: Include Files 204

D.4 Sample File with @include

Here is an example of an outer Texinfo �le with @include �les within it before runningtexinfo-multiple-files-update, which would insert a main or master menu:
\input texinfo @c -*-texinfo-*-@setfilename include-example.info@settitle Include Example
... See Appendix C [Sample Texinfo Files], page 196, forexamples of the rest of the frontmatter ...
@ifnottex@node Top@top Include Example@end ifnottex
@include foo.texinfo@include bar.texinfo@include concept-index.texinfo@byeAn included �le, such as `foo.texinfo', might look like this:
@node First@chapter First Chapter
Contents of first chapter ...The full contents of `concept-index.texinfo' might be as simple as this:
@node Concept Index@unnumbered Concept Index
@printindex cpThe outer Texinfo source �le for The GNU Emacs Lisp Reference Manualis named`elisp.texi'. This outer �le contains a master menu with 417 entries and a list of 41@include �les.

D.5 Evolution of Include Files
When Info was �rst created, it was customary to create many small Info �les on onesubject. Each Info �le was formatted from its own Texinfo source �le. This custom meantthat Emacs did not need to make a large bu�er to hold the whole of a large Info �le whensomeone wanted information; instead, Emacs allocated just enough memory for the smallInfo �le that contained the particular information sought. This way, Emacs could avoidwasting memory.
References from one �le to another were made by referring to the �le name as wellas the node name. (See Section 7.5 [Referring to Other Info Files], page 63. Also, seeSection 8.3.4 [@xref with Four and Five Arguments], page 70.)

Appendix D: Include Files 205

Include �les were designed primarily as a way to create a single, large printed manualout of several smaller Info �les. In a printed manual, all the references were within the samedocument, so TEX could automatically determine the references' page numbers. The Infoformatting commands used include �les only for creating joint indices; each of the individualTexinfo �les had to be formatted for Info individually. (Each, therefore, required its own@setfilename line.)However, because large Info �les are now split automatically, it is no longer necessaryto keep them small.Nowadays, multiple Texinfo �les are used mostly for large documents, such as The
GNU Emacs Lisp Reference Manual, and for projects in which several di�erent peoplewrite di�erent sections of a document simultaneously.In addition, the Info formatting commands have been extended to work with the@include command so as to create a single large Info �le that is split into smaller �lesif necessary. This means that you can write menus and cross references without naming thedi�erent Texinfo �les.

Appendix E: Page Headings 206

Appendix E Page Headings

Most printed manuals contain headings along the top of every page except the titleand copyright pages. Some manuals also contain footings. (Headings and footings have nomeaning to Info, which is not paginated.)Texinfo provides standard page heading formats for manuals that are printed on oneside of each sheet of paper and for manuals that are printed on both sides of the paper.Typically, you will use these formats, but you can specify your own format if you wish.In addition, you can specify whether chapters should begin on a new page, or merelycontinue the same page as the previous chapter; and if chapters begin on new pages, youcan specify whether they must be odd-numbered pages.By convention, a book is printed on both sides of each sheet of paper. When you opena book, the right-hand page is odd-numbered, and chapters begin on right-hand pages|apreceding left-hand page is left blank if necessary. Reports, however, are often printed onjust one side of paper, and chapters begin on a fresh page immediately following the end ofthe preceding chapter. In short or informal reports, chapters often do not begin on a newpage at all, but are separated from the preceding text by a small amount of whitespace.The @setchapternewpage command controls whether chapters begin on new pages,and whether one of the standard heading formats is used. In addition, Texinfo has severalheading and footing commands that you can use to generate your own heading and footingformats.In Texinfo, headings and footings are single lines at the tops and bottoms of pages;you cannot create multiline headings or footings. Each header or footer line is divided intothree parts: a left part, a middle part, and a right part. Any part, or a whole line, maybe left blank. Text for the left part of a header or footer line is set
ushleft; text for themiddle part is centered; and, text for the right part is set
ushright.
E.1 Standard Heading Formats

Texinfo provides two standard heading formats, one for manuals printed on one side ofeach sheet of paper, and the other for manuals printed on both sides of the paper.By default, nothing is speci�ed for the footing of a Texinfo �le, so the footing remainsblank.The standard format for single-sided printing consists of a header line in which the left-hand part contains the name of the chapter, the central part is blank, and the right-handpart contains the page number.A single-sided page looks like this:_______________________| || chapter page number || || Start of text ... || ... || |

Appendix E: Page Headings 207

The standard format for two-sided printing depends on whether the page number iseven or odd. By convention, even-numbered pages are on the left- and odd-numbered pagesare on the right. (TEX will adjust the widths of the left- and right-hand margins. Usually,widths are correct, but during double-sided printing, it is wise to check that pages will bindproperly|sometimes a printer will produce output in which the even-numbered pages havea larger right-hand margin than the odd-numbered pages.)In the standard double-sided format, the left part of the left-hand (even-numbered)page contains the page number, the central part is blank, and the right part contains thetitle (speci�ed by the @settitle command). The left part of the right-hand (odd-numbered)page contains the name of the chapter, the central part is blank, and the right part containsthe page number.Two pages, side by side as in an open book, look like this:
_______________________ _______________________| | | || page number title | | chapter page number || | | || Start of text ... | | More text ... || ... | | ... || | | |

The chapter name is preceded by the word \Chapter", the chapter number and a colon.This makes it easier to keep track of where you are in the manual.
E.2 Specifying the Type of Heading

TEX does not begin to generate page headings for a standard Texinfo �le until it reachesthe @end titlepage command. Thus, the title and copyright pages are not numbered.The @end titlepage command causes TEX to begin to generate page headings accordingto a standard format speci�ed by the @setchapternewpage command that precedes the@titlepage section.There are four possibilities:
No @setchapternewpage commandCause TEX to specify the single-sided heading format, with chapters on newpages. This is the same as @setchapternewpage on.
@setchapternewpage onSpecify the single-sided heading format, with chapters on new pages.
@setchapternewpage offCause TEX to start a new chapter on the same page as the last page of thepreceding chapter, after skipping some vertical whitespace. Also cause TEXto typeset for single-sided printing. (You can override the headers format withthe @headings double command; see Section 3.4.6 [The @headings Command],page 39.)
@setchapternewpage oddSpecify the double-sided heading format, with chapters on new pages.

Appendix E: Page Headings 208

Texinfo lacks an @setchapternewpage even command.
E.3 How to Make Your Own Headings

You can use the standard headings provided with Texinfo or specify your own. Bydefault, Texinfo has no footers, so if you specify them, the available page size for the maintext will be slightly reduced.Texinfo provides six commands for specifying headings and footings:
� @everyheading @everyfooting generate page headers and footers that are the samefor both even- and odd-numbered pages.
� @evenheading and @evenfooting command generate headers and footers for even-numbered (left-hand) pages.
� @oddheading and @oddfooting generate headers and footers for odd-numbered (right-hand) pages.

Write custom heading speci�cations in the Texinfo �le immediately after the @endtitlepage command. You must cancel the prede�ned heading commands with the@headings off command before de�ning your own speci�cations.Here is how to tell TEX to place the chapter name at the left, the page number in thecenter, and the date at the right of every header for both even- and odd-numbered pages:
@headings off@everyheading @thischapter @| @thispage @| @today{}You need to divide the left part from the central part and the central part from the rightpart by inserting `@|' between parts. Otherwise, the speci�cation command will not be ableto tell where the text for one part ends and the next part begins.Each part can contain text or @-commands. The text is printed as if the part werewithin an ordinary paragraph in the body of the page. The @-commands replace themselveswith the page number, date, chapter name, or whatever.Here are the six heading and footing commands:

@everyheading left @| center @| right@everyfooting left @| center @| rightThe `every' commands specify the format for both even- and odd-numberedpages. These commands are for documents that are printed on one side of eachsheet of paper, or for documents in which you want symmetrical headers orfooters.
@evenheading left @| center @| right@oddheading left @| center @| right@evenfooting left @| center @| right@oddfooting left @| center @| rightThe `even' and `odd' commands specify the format for even-numbered pagesand odd-numbered pages. These commands are for books and manuals thatare printed on both sides of each sheet of paper.

Use the `@this...' series of @-commands to provide the names of chapters and sectionsand the page number. You can use the `@this...' commands in the left, center, or right

Appendix E: Page Headings 209

portions of headers and footers, or anywhere else in a Texinfo �le so long as they are between@iftex and @end iftex commands.Here are the `@this...' commands:
@thispage Expands to the current page number.
@thischapternameExpands to the name of the current chapter.
@thischapterExpands to the number and name of the current chapter, in the format `Chapter1: Title'.
@thistitleExpands to the name of the document, as speci�ed by the @settitle command.
@thisfile For @include �les only: expands to the name of the current @include �le. Ifthe current Texinfo source �le is not an @include �le, this command has noe�ect. This command does not provide the name of the current Texinfo source�le unless it is an @include �le. (See Appendix D [Include Files], page 202, formore information about @include �les.)
You can also use the @today{} command, which expands to the current date, in `1 Jan1900' format.Other @-commands and text are printed in a header or footer just as if they were in thebody of a page. It is useful to incorporate text, particularly when you are writing drafts:

@headings off@everyheading @emph{Draft!} @| @thispage @| @thischapter@everyfooting @| @| Version: 0.27: @today{}Beware of overlong titles: they may overlap another part of the header or footer andblot it out.

Appendix F: Formatting Mistakes 210

Appendix F Formatting Mistakes

Besides mistakes in the content of your documentation, there are two kinds of mistakeyou can make with Texinfo: you can make mistakes with @-commands, and you can makemistakes with the structure of the nodes and chapters.
Emacs has two tools for catching the @-command mistakes and two for catching struc-turing mistakes.
For �nding problems with @-commands, you can run TEX or a region formatting com-mand on the region that has a problem; indeed, you can run these commands on each regionas you write it.
For �nding problems with the structure of nodes and chapters, you can use C-c C-

s (texinfo-show-structure) and the related occur command and you can use the M-x
Info-validate command.

The makeinfo program does an excellent job of catching errors and reporting them|farbetter than texinfo-format-region or texinfo-format-buffer. In addition, the variousfunctions for automatically creating and updating node pointers and menus remove manyopportunities for human error.
If you can, use the updating commands to create and insert pointers and menus. Theseprevent many errors. Then use makeinfo (or its Texinfo mode manifestations, makeinfo-region and makeinfo-buffer) to format your �le and check for other errors. This is thebest way to work with Texinfo. But if you cannot use makeinfo, or your problem is verypuzzling, then you may want to use the tools described in this appendix.

F.1 Catching Errors with Info Formatting
After you have written part of a Texinfo �le, you can use the texinfo-format-regionor the makeinfo-region command to see whether the region formats properly.
Most likely, however, you are reading this section because for some reason you cannotuse the makeinfo-region command; therefore, the rest of this section presumes that youare using texinfo-format-region.
If you have made a mistake with an @-command, texinfo-format-region will stopprocessing at or after the error and display an error message. To see where in the bu�erthe error occurred, switch to the `*Info Region*' bu�er; the cursor will be in a positionthat is after the location of the error. Also, the text will not be formatted after the placewhere the error occurred (or more precisely, where it was detected).
For example, if you accidentally end a menu with the command @end menus with an`s' on the end, instead of with @end menu, you will see an error message that says:
@end menus is not handled by texinfo

The cursor will stop at the point in the bu�er where the error occurs, or not long after it.The bu�er will look like this:

Appendix F: Formatting Mistakes 211

---------- Buffer: *Info Region* ----------* Menu:
* Using texinfo-show-structure:: How to use`texinfo-show-structure'to catch mistakes.* Running Info-Validate:: How to check forunreferenced nodes.@end menus?---------- Buffer: *Info Region* ----------The texinfo-format-region command sometimes provides slightly odd error mes-sages. For example, the following cross reference fails to format:
(@xref{Catching Mistakes, for more info.)In this case, texinfo-format-region detects the missing closing brace but displays amessage that says `Unbalanced parentheses' rather than `Unbalanced braces'. This isbecause the formatting command looks for mismatches between braces as if they wereparentheses.Sometimes texinfo-format-region fails to detect mistakes. For example, in the fol-lowing, the closing brace is swapped with the closing parenthesis:
(@xref{Catching Mistakes), for more info.}Formatting produces:
(*Note for more info.: Catching Mistakes)The only way for you to detect this error is to realize that the reference should havelooked like this:
(*Note Catching Mistakes::, for more info.)Incidentally, if you are reading this node in Info and type f hRETi (Info-follow-reference), you will generate an error message that says:
No such node: "Catching Mistakes) The only way ...This is because Info perceives the example of the error as the �rst cross reference in thisnode and if you type a hRETi immediately after typing the Info f command, Info will attemptto go to the referenced node. If you type f catch hTABi hRETi , Info will complete the nodename of the correctly written example and take you to the `Catching Mistakes' node. (Ifyou try this, you can return from the `Catching Mistakes' node by typing l (Info-last).)

F.2 Catching Errors with TEX Formatting
You can also catch mistakes when you format a �le with TEX.Usually, you will want to do this after you have run texinfo-format-buffer (or,better, makeinfo-buffer) on the same �le, because texinfo-format-buffer sometimesdisplays error messages that make more sense than TEX. (See Section F.1 [Debugging withInfo], page 210, for more information.)For example, TEX was run on a Texinfo �le, part of which is shown here:

Appendix F: Formatting Mistakes 212

---------- Buffer: texinfo.texi ----------name of the Texinfo file as an extension. The@samp{??} are `wildcards' that cause the shell tosubstitute all the raw index files. (@xref{sortingindices, for more information about sortingindices.)@refill---------- Buffer: texinfo.texi ----------(The cross reference lacks a closing brace.) TEX produced the following output, after whichit stopped:
---------- Buffer: *tex-shell* ----------Runaway argument?{sorting indices, for more information about sortingindices.) @refill @ETC.! Paragraph ended before @xref was complete.<to be read again>@parl.27
?---------- Buffer: *tex-shell* ----------In this case, TEX produced an accurate and understandable error message:
Paragraph ended before @xref was complete.`@par' is an internal TEX command of no relevance to Texinfo. `l.27' means that TEXdetected the problem on line 27 of the Texinfo �le. The `?' is the prompt TEX uses in thiscircumstance.Unfortunately, TEX is not always so helpful, and sometimes you must truly be a Sher-lock Holmes to discover what went wrong.In any case, if you run into a problem like this, you can do one of three things.1. You can tell TEX to continue running and ignore just this error by typing hRETi at the`?' prompt.2. You can tell TEX to continue running and to ignore all errors as best it can by typing

r hRETi at the `?' prompt.This is often the best thing to do. However, beware: the one error may produce acascade of additional error messages as its consequences are felt through the rest of the�le. To stop TEX when it is producing such an avalanche of error messages, type C-c(or C-c C-c, if you are running a shell inside Emacs).3. You can tell TEX to stop this run by typing x hRETi at the `?' prompt.
If you are running TEX inside Emacs, you need to switch to the shell bu�er and line atwhich TEX o�ers the `?' prompt.Sometimes TEX will format a �le without producing error messages even though thereis a problem. This usually occurs if a command is not ended but TEX is able to continueprocessing anyhow. For example, if you fail to end an itemized list with the @end itemizecommand, TEX will write a DVI �le that you can print out. The only error message thatTEX will give you is the somewhat mysterious comment that

Appendix F: Formatting Mistakes 213

(@end occurred inside a group at level 1)However, if you print the DVI �le, you will �nd that the text of the �le that follows theitemized list is entirely indented as if it were part of the last item in the itemized list. Theerror message is the way TEX says that it expected to �nd an @end command somewherein the �le; but that it could not determine where it was needed.Another source of notoriously hard-to-�nd errors is a missing @end group command. Ifyou ever are stumped by incomprehensible errors, look for a missing @end group command�rst.If the Texinfo �le lacks header lines, TEX may stop in the beginning of its run anddisplay output that looks like the following. The `*' indicates that TEX is waiting for input.This is TeX, Version 3.14159 (Web2c 7.0)(test.texinfo [1])*In this case, simply type \end hRETi after the asterisk. Then write the header lines in theTexinfo �le and run the TEX command again. (Note the use of the backslash, `\'. TEX uses`\' instead of `@'; and in this circumstance, you are working directly with TEX, not withTexinfo.)
F.3 Using texinfo-show-structure

It is not always easy to keep track of the nodes, chapters, sections, and subsections ofa Texinfo �le. This is especially true if you are revising or adding to a Texinfo �le thatsomeone else has written.In GNU Emacs, in Texinfo mode, the texinfo-show-structure command lists allthe lines that begin with the @-commands that specify the structure: @chapter, @section,@appendix, and so on. With an argument (C-u as pre�x argument, if interactive), thecommand also shows the @node lines. The texinfo-show-structure command is boundto C-c C-s in Texinfo mode, by default.The lines are displayed in a bu�er called the `*Occur*' bu�er, indented by hierarchi-cal level. For example, here is a part of what was produced by running texinfo-show-structure on this manual:Lines matching "^@\\(chapter \\|sect\\|subs\\|subh\\|unnum\\|major\\|chapheading \\|heading \\|appendix\\)"in buffer texinfo.texi....4177:@chapter Nodes4198: @heading Two Paths4231: @section Node and Menu Illustration4337: @section The @code{@@node} Command4393: @subheading Choosing Node and Pointer Names4417: @subsection How to Write an @code{@@node} Line4469: @subsection @code{@@node} Line Tips...This says that lines 4337, 4393, and 4417 of `texinfo.texi' begin with the @section,@subheading, and @subsection commands respectively. If you move your cursor into the

Appendix F: Formatting Mistakes 214

`*Occur*' window, you can position the cursor over one of the lines and use the C-c C-
c command (occur-mode-goto-occurrence), to jump to the corresponding spot in theTexinfo �le. See section \Using Occur" in The GNU Emacs Manual, for more informationabout occur-mode-goto-occurrence.

The �rst line in the `*Occur*' window describes the regular expression speci�edby texinfo-heading-pattern. This regular expression is the pattern that texinfo-show-structure looks for. See section \Using Regular Expressions" in The GNU Emacs
Manual, for more information.

When you invoke the texinfo-show-structure command, Emacs will display thestructure of the whole bu�er. If you want to see the structure of just a part of the bu�er,of one chapter, for example, use the C-x n n (narrow-to-region) command to mark theregion. (See section \Narrowing" in The GNU Emacs Manual.) This is how the exampleused above was generated. (To see the whole bu�er again, use C-x n w (widen).)
If you call texinfo-show-structure with a pre�x argument by typing C-u C-c C-s, itwill list lines beginning with @node as well as the lines beginning with the @-sign commandsfor @chapter, @section, and the like.
You can remind yourself of the structure of a Texinfo �le by looking at the list in the`*Occur*' window; and if you have mis-named a node or left out a section, you can correctthe mistake.

F.4 Using occur

Sometimes the texinfo-show-structure command produces too much information.Perhaps you want to remind yourself of the overall structure of a Texinfo �le, and areoverwhelmed by the detailed list produced by texinfo-show-structure. In this case, youcan use the occur command directly. To do this, type
M-x occur

and then, when prompted, type a regexp, a regular expression for the pattern you wantto match. (See section \Regular Expressions" in The GNU Emacs Manual.) The occurcommand works from the current location of the cursor in the bu�er to the end of thebu�er. If you want to run occur on the whole bu�er, place the cursor at the beginning ofthe bu�er.
For example, to see all the lines that contain the word `@chapter' in them, just type`@chapter'. This will produce a list of the chapters. It will also list all the sentences with`@chapter' in the middle of the line.
If you want to see only those lines that start with the word `@chapter', type `^@chapter'when prompted by occur. If you want to see all the lines that end with a word or phrase,end the last word with a `$'; for example, `catching mistakes$'. This can be helpful whenyou want to see all the nodes that are part of the same chapter or section and thereforehave the same `Up' pointer.
See section \Using Occur" in The GNU Emacs Manual, for more information.

Appendix F: Formatting Mistakes 215

F.5 Finding Badly Referenced Nodes
You can use the Info-validate command to check whether any of the `Next', `Previ-ous', `Up' or other node pointers fail to point to a node. This command checks that everynode pointer points to an existing node. The Info-validate command works only on Info�les, not on Texinfo �les.The makeinfo program validates pointers automatically, so you do not need to use theInfo-validate command if you are using makeinfo. You only may need to use Info-validate if you are unable to run makeinfo and instead must create an Info �le usingtexinfo-format-region or texinfo-format-buffer, or if you write an Info �le fromscratch.

F.5.1 Running Info-validate

To use Info-validate, visit the Info �le you wish to check and type:
M-x Info-validateNote that the Info-validate command requires an upper case `I'. You may also need tocreate a tag table before running Info-validate. See Section F.5.3 [Tagifying], page 216.If your �le is valid, you will receive a message that says \File appears valid". However,if you have a pointer that does not point to a node, error messages will be displayed in abu�er called `*problems in info file*'.For example, Info-validate was run on a test �le that contained only the �rst nodeof this manual. One of the messages said:
In node "Overview", invalid Next: Texinfo ModeThis meant that the node called `Overview' had a `Next' pointer that did not point toanything (which was true in this case, since the test �le had only one node in it).Now suppose we add a node named `Texinfo Mode' to our test case but we do notspecify a `Previous' for this node. Then we will get the following error message:
In node "Texinfo Mode", should have Previous: OverviewThis is because every `Next' pointer should be matched by a `Previous' (in the node wherethe `Next' points) which points back.

Info-validate also checks that all menu entries and cross references point to actualnodes.
Info-validate requires a tag table and does not work with �les that have been split.(The texinfo-format-buffer command automatically splits large �les.) In order to useInfo-validate on a large �le, you must run texinfo-format-buffer with an argumentso that it does not split the Info �le; and you must create a tag table for the unsplit �le.

F.5.2 Creating an Unsplit File

You can run Info-validate only on a single Info �le that has a tag table. Thecommand will not work on the indirect sub�les that are generated when a master �le issplit. If you have a large �le (longer than 70,000 bytes or so), you need to run the texinfo-format-buffer or makeinfo-buffer command in such a way that it does not create indirect

Appendix F: Formatting Mistakes 216

sub�les. You will also need to create a tag table for the Info �le. After you have done this,you can run Info-validate and look for badly referenced nodes.
The �rst step is to create an unsplit Info �le. To prevent texinfo-format-bufferfrom splitting a Texinfo �le into smaller Info �les, give a pre�x to the M-x texinfo-format-

buffer command:
C-u M-x texinfo-format-buffer

or else
C-u C-c C-e C-b

When you do this, Texinfo will not split the �le and will not create a tag table for it.
F.5.3 Tagifying a File

After creating an unsplit Info �le, you must create a tag table for it. Visit the Info �leyou wish to tagify and type:
M-x Info-tagify

(Note the upper case `I' in Info-tagify.) This creates an Info �le with a tag table thatyou can validate.
The third step is to validate the Info �le:
M-x Info-validate

(Note the upper case `I' in Info-validate.) In brief, the steps are:
C-u M-x texinfo-format-bufferM-x Info-tagifyM-x Info-validateAfter you have validated the node structure, you can rerun texinfo-format-bufferin the normal way so it will construct a tag table and split the �le automatically, or youcan make the tag table and split the �le manually.

F.5.4 Splitting a File Manually

You should split a large �le or else let the texinfo-format-buffer or makeinfo-buffer command do it for you automatically. (Generally you will let one of the formattingcommands do this job for you. See Section 20.1 [Creating an Info File], page 158.)
The split-o� �les are called the indirect sub�les.
Info �les are split to save memory. With smaller �les, Emacs does not have make sucha large bu�er to hold the information.
If an Info �le has more than 30 nodes, you should also make a tag table for it. SeeSection F.5.1 [Using Info-validate], page 215, for information about creating a tag table.(Again, tag tables are usually created automatically by the formatting command; you onlyneed to create a tag table yourself if you are doing the job manually. Most likely, you willdo this for a large, unsplit �le on which you have run Info-validate.)
Visit the Info �le you wish to tagify and split and type the two commands:

Appendix F: Formatting Mistakes 217

M-x Info-tagifyM-x Info-split(Note that the `I' in `Info' is upper case.)When you use the Info-split command, the bu�er is modi�ed into a (small) Info �lewhich lists the indirect sub�les. This �le should be saved in place of the original visited �le.The indirect sub�les are written in the same directory the original �le is in, with namesgenerated by appending `-' and a number to the original �le name.The primary �le still functions as an Info �le, but it contains just the tag table and adirectory of sub�les.

Appendix G: Re�lling Paragraphs 218

Appendix G Re�lling Paragraphs

The @refill command re�lls and, optionally, indents the �rst line of a paragraph.1The @refill command is no longer important, but we describe it here because you onceneeded it. You will see it in many old Texinfo �les.Without re�lling, paragraphs containing long @-constructs may look bad after format-ting because the formatter removes @-commands and shortens some lines more than oth-ers. In the past, neither the texinfo-format-region command nor the texinfo-format-buffer command re�lled paragraphs automatically. The @refill command had to bewritten at the end of every paragraph to cause these formatters to �ll them. (Both TEXand makeinfo have always re�lled paragraphs automatically.) Now, all the Info formattersautomatically �ll and indent those paragraphs that need to be �lled and indented.The @refill command causes texinfo-format-region and texinfo-format-bufferto re�ll a paragraph in the Info �le after all the other processing has been done. For thisreason, you can not use @refill with a paragraph containing either @* or @w{ ... } sincethe re�lling action will override those two commands.The texinfo-format-region and texinfo-format-buffer commands now automat-ically append @refill to the end of each paragraph that should be �lled. They do notappend @refill to the ends of paragraphs that contain @* or @w{ ...} and therefore donot re�ll or indent them.

1 Perhaps the command should have been called the@refillandindent command, but @refill is shorter
and the name was chosen before indenting was possible.

Appendix H: @-Command Syntax 219

Appendix H @-Command Syntax

The character `@' is used to start special Texinfo commands. (It has the same meaningthat `\' has in plain TEX.) Texinfo has four types of @-command:
1. Non-alphabetic commands.These commands consist of an @ followed by a punctuation mark or other char-acter that is not part of the alphabet. Non-alphabetic commands are almostalways part of the text within a paragraph, and never take any argument. Thetwo characters (@ and the other one) are complete in themselves; none is fol-lowed by braces. The non-alphabetic commands are: @., @:, @*, @SPACE, @TAB,@NL, @@, @{, and @}.
2. Alphabetic commands that do not require arguments.These commands start with @ followed by a word followed by left- and right-hand braces. These commands insert special symbols in the document; theydo not require arguments. For example, @dots{}) `...', @equiv{}) `� ',@TeX{}) `TEX', and @bullet{}) `�'.
3. Alphabetic commands that require arguments within braces.These commands start with @ followed by a letter or a word, followed by an argu-ment within braces. For example, the command @dfn indicates the introductoryor de�ning use of a term; it is used as follows: `In Texinfo, @@-commands are@dfn{mark-up} commands.'
4. Alphabetic commands that occupy an entire line.These commands occupy an entire line. The line starts with @, followed bythe name of the command (a word); for example, @center or @cindex. If noargument is needed, the word is followed by the end of the line. If there is anargument, it is separated from the command name by a space. Braces are notused.

Thus, the alphabetic commands fall into classes that have di�erent argument syntaxes.You cannot tell to which class a command belongs by the appearance of its name, but youcan tell by the command's meaning: if the command stands for a glyph, it is in class 2 anddoes not require an argument; if it makes sense to use the command together with othertext as part of a paragraph, the command is in class 3 and must be followed by an argumentin braces; otherwise, it is in class 4 and uses the rest of the line as its argument.The purpose of having a di�erent syntax for commands of classes 3 and 4 is to makeTexinfo �les easier to read, and also to help the GNU Emacs paragraph and �lling commandswork properly. There is only one exception to this rule: the command @refill, which isalways used at the end of a paragraph immediately following the �nal period or otherpunctuation character. @refill takes no argument and does not require braces. @refillnever confuses the Emacs paragraph commands because it cannot appear at the beginningof a line.

Appendix I: How to Obtain TEX 220

Appendix I How to Obtain T EX

TEX is freely redistributable. You can obtain TEX for Unix systems via anonymousftp or on physical media. The core material consists of the Web2c TEX distribution(http://tug.org/web2c).Instructions for retrieval by anonymous ftp and information on other available distri-butions:
ftp://tug.org/tex/unixtex.ftphttp://tug.org/unixtex.ftpThe Free Software Foundation provides a core distribution on its Source Code CD-ROMsuitable for printing Texinfo manuals. To order it, contact:Free Software Foundation, Inc.59 Temple Place Suite 330Boston, MA 02111-1307USATelephone: +1-617-542-5942Fax: (including Japan) +1-617-542-2652Free Dial Fax (in Japan):0031-13-2473 (KDD)0066-3382-0158 (IDC)Electronic mail: gnu@gnu.orgMany other TEX distributions are available; see http://tug.org/.

http://tug.org/web2c
ftp://tug.org/tex/unixtex.ftp
http://tug.org/unixtex.ftp
http://tug.org/

Appendix J: Copying This Manual 221

Appendix J Copying This Manual

J.1 GNU Free Documentation License
Version 1.2, November 2002Copyright c
 2000,2001,2002 Free Software Foundation, Inc.59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copiesof this license document, but changing it is not allowed.0. PREAMBLEThe purpose of this License is to make a manual, textbook, or other functional anduseful document free in the sense of freedom: to assure everyone the e�ective freedomto copy and redistribute it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a wayto get credit for their work, while not being considered responsible for modi�cationsmade by others.This License is a kind of \copyleft", which means that derivative works of the documentmust themselves be free in the same sense. It complements the GNU General PublicLicense, which is a copyleft license designed for free software.We have designed this License in order to use it for manuals for free software, becausefree software needs free documentation: a free program should come with manualsproviding the same freedoms that the software does. But this License is not limited tosoftware manuals; it can be used for any textual work, regardless of subject matter orwhether it is published as a printed book. We recommend this License principally forworks whose purpose is instruction or reference.1. APPLICABILITY AND DEFINITIONSThis License applies to any manual or other work, in any medium, that contains anotice placed by the copyright holder saying it can be distributed under the termsof this License. Such a notice grants a world-wide, royalty-free license, unlimited induration, to use that work under the conditions stated herein. The \Document",below, refers to any such manual or work. Any member of the public is a licensee, andis addressed as \you". You accept the license if you copy, modify or distribute the workin a way requiring permission under copyright law.A \Modi�ed Version" of the Document means any work containing the Document ora portion of it, either copied verbatim, or with modi�cations and/or translated intoanother language.A \Secondary Section" is a named appendix or a front-matter section of the Documentthat deals exclusively with the relationship of the publishers or authors of the Documentto the Document's overall subject (or to related matters) and contains nothing thatcould fall directly within that overall subject. (Thus, if the Document is in part atextbook of mathematics, a Secondary Section may not explain any mathematics.) Therelationship could be a matter of historical connection with the subject or with related

Appendix J: Copying This Manual 222

matters, or of legal, commercial, philosophical, ethical or political position regardingthem.The \Invariant Sections" are certain Secondary Sections whose titles are designated, asbeing those of Invariant Sections, in the notice that says that the Document is releasedunder this License. If a section does not �t the above de�nition of Secondary then it isnot allowed to be designated as Invariant. The Document may contain zero InvariantSections. If the Document does not identify any Invariant Sections then there are none.The \Cover Texts" are certain short passages of text that are listed, as Front-CoverTexts or Back-Cover Texts, in the notice that says that the Document is released underthis License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text maybe at most 25 words.A \Transparent" copy of the Document means a machine-readable copy, representedin a format whose speci�cation is available to the general public, that is suitable forrevising the document straightforwardly with generic text editors or (for images com-posed of pixels) generic paint programs or (for drawings) some widely available drawingeditor, and that is suitable for input to text formatters or for automatic translation toa variety of formats suitable for input to text formatters. A copy made in an otherwiseTransparent �le format whose markup, or absence of markup, has been arranged tothwart or discourage subsequent modi�cation by readers is not Transparent. An imageformat is not Transparent if used for any substantial amount of text. A copy that isnot \Transparent" is called \Opaque".Examples of suitable formats for Transparent copies include plain ascii withoutmarkup, Texinfo input format, LaTEX input format, sgml or xml using a publiclyavailable dtd , and standard-conforming simple html , PostScript or pdf designed forhuman modi�cation. Examples of transparent image formats include png , xcf and
jpg . Opaque formats include proprietary formats that can be read and edited onlyby proprietary word processors, sgml or xml for which the dtd and/or processingtools are not generally available, and the machine-generated html , PostScript or pdfproduced by some word processors for output purposes only.The \Title Page" means, for a printed book, the title page itself, plus such followingpages as are needed to hold, legibly, the material this License requires to appear in thetitle page. For works in formats which do not have any title page as such, \Title Page"means the text near the most prominent appearance of the work's title, preceding thebeginning of the body of the text.A section \Entitled XYZ" means a named subunit of the Document whose title eitheris precisely XYZ or contains XYZ in parentheses following text that translates XYZ inanother language. (Here XYZ stands for a speci�c section name mentioned below, suchas \Acknowledgements", \Dedications", \Endorsements", or \History".) To \Preservethe Title" of such a section when you modify the Document means that it remains asection \Entitled XYZ" according to this de�nition.The Document may include Warranty Disclaimers next to the notice which states thatthis License applies to the Document. These Warranty Disclaimers are considered tobe included by reference in this License, but only as regards disclaiming warranties:any other implication that these Warranty Disclaimers may have is void and has noe�ect on the meaning of this License.

Appendix J: Copying This Manual 223

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially ornoncommercially, provided that this License, the copyright notices, and the licensenotice saying this License applies to the Document are reproduced in all copies, andthat you add no other conditions whatsoever to those of this License. You may not usetechnical measures to obstruct or control the reading or further copying of the copiesyou make or distribute. However, you may accept compensation in exchange for copies.If you distribute a large enough number of copies you must also follow the conditionsin section 3.
You may also lend copies, under the same conditions stated above, and you may publiclydisplay copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) ofthe Document, numbering more than 100, and the Document's license notice requiresCover Texts, you must enclose the copies in covers that carry, clearly and legibly, allthese Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts onthe back cover. Both covers must also clearly and legibly identify you as the publisherof these copies. The front cover must present the full title with all words of the titleequally prominent and visible. You may add other material on the covers in addition.Copying with changes limited to the covers, as long as they preserve the title of theDocument and satisfy these conditions, can be treated as verbatim copying in otherrespects.
If the required texts for either cover are too voluminous to �t legibly, you should putthe �rst ones listed (as many as �t reasonably) on the actual cover, and continue therest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,you must either include a machine-readable Transparent copy along with each Opaquecopy, or state in or with each Opaque copy a computer-network location from whichthe general network-using public has access to download using public-standard networkprotocols a complete Transparent copy of the Document, free of added material. Ifyou use the latter option, you must take reasonably prudent steps, when you begindistribution of Opaque copies in quantity, to ensure that this Transparent copy willremain thus accessible at the stated location until at least one year after the last timeyou distribute an Opaque copy (directly or through your agents or retailers) of thatedition to the public.
It is requested, but not required, that you contact the authors of the Document wellbefore redistributing any large number of copies, to give them a chance to provide youwith an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modi�ed Version of the Document under the conditionsof sections 2 and 3 above, provided that you release the Modi�ed Version under preciselythis License, with the Modi�ed Version �lling the role of the Document, thus licensingdistribution and modi�cation of the Modi�ed Version to whoever possesses a copy ofit. In addition, you must do these things in the Modi�ed Version:

Appendix J: Copying This Manual 224

A. Use in the Title Page (and on the covers, if any) a title distinct from that of theDocument, and from those of previous versions (which should, if there were any,be listed in the History section of the Document). You may use the same title asa previous version if the original publisher of that version gives permission.B. List on the Title Page, as authors, one or more persons or entities responsible forauthorship of the modi�cations in the Modi�ed Version, together with at least �veof the principal authors of the Document (all of its principal authors, if it has fewerthan �ve), unless they release you from this requirement.C. State on the Title page the name of the publisher of the Modi�ed Version, as thepublisher.D. Preserve all the copyright notices of the Document.E. Add an appropriate copyright notice for your modi�cations adjacent to the othercopyright notices.F. Include, immediately after the copyright notices, a license notice giving the publicpermission to use the Modi�ed Version under the terms of this License, in the formshown in the Addendum below.G. Preserve in that license notice the full lists of Invariant Sections and required CoverTexts given in the Document's license notice.H. Include an unaltered copy of this License.I. Preserve the section Entitled \History", Preserve its Title, and add to it an itemstating at least the title, year, new authors, and publisher of the Modi�ed Versionas given on the Title Page. If there is no section Entitled \History" in the Docu-ment, create one stating the title, year, authors, and publisher of the Documentas given on its Title Page, then add an item describing the Modi�ed Version asstated in the previous sentence.J. Preserve the network location, if any, given in the Document for public access toa Transparent copy of the Document, and likewise the network locations given inthe Document for previous versions it was based on. These may be placed in the\History" section. You may omit a network location for a work that was publishedat least four years before the Document itself, or if the original publisher of theversion it refers to gives permission.K. For any section Entitled \Acknowledgements" or \Dedications", Preserve the Titleof the section, and preserve in the section all the substance and tone of each of thecontributor acknowledgements and/or dedications given therein.L. Preserve all the Invariant Sections of the Document, unaltered in their text andin their titles. Section numbers or the equivalent are not considered part of thesection titles.M. Delete any section Entitled \Endorsements". Such a section may not be includedin the Modi�ed Version.N. Do not retitle any existing section to be Entitled \Endorsements" or to con
ict intitle with any Invariant Section.O. Preserve any Warranty Disclaimers.
If the Modi�ed Version includes new front-matter sections or appendices that qualifyas Secondary Sections and contain no material copied from the Document, you may at

Appendix J: Copying This Manual 225

your option designate some or all of these sections as invariant. To do this, add theirtitles to the list of Invariant Sections in the Modi�ed Version's license notice. Thesetitles must be distinct from any other section titles.You may add a section Entitled \Endorsements", provided it contains nothing butendorsements of your Modi�ed Version by various parties|for example, statements ofpeer review or that the text has been approved by an organization as the authoritativede�nition of a standard.You may add a passage of up to �ve words as a Front-Cover Text, and a passage of upto 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modi�edVersion. Only one passage of Front-Cover Text and one of Back-Cover Text may beadded by (or through arrangements made by) any one entity. If the Document alreadyincludes a cover text for the same cover, previously added by you or by arrangementmade by the same entity you are acting on behalf of, you may not add another; butyou may replace the old one, on explicit permission from the previous publisher thatadded the old one.The author(s) and publisher(s) of the Document do not by this License give permissionto use their names for publicity for or to assert or imply endorsement of any Modi�edVersion.5. COMBINING DOCUMENTSYou may combine the Document with other documents released under this License,under the terms de�ned in section 4 above for modi�ed versions, provided that youinclude in the combination all of the Invariant Sections of all of the original documents,unmodi�ed, and list them all as Invariant Sections of your combined work in its licensenotice, and that you preserve all their Warranty Disclaimers.The combined work need only contain one copy of this License, and multiple identicalInvariant Sections may be replaced with a single copy. If there are multiple InvariantSections with the same name but di�erent contents, make the title of each such sectionunique by adding at the end of it, in parentheses, the name of the original author orpublisher of that section if known, or else a unique number. Make the same adjustmentto the section titles in the list of Invariant Sections in the license notice of the combinedwork.In the combination, you must combine any sections Entitled \History" in the vari-ous original documents, forming one section Entitled \History"; likewise combine anysections Entitled \Acknowledgements", and any sections Entitled \Dedications". Youmust delete all sections Entitled \Endorsements."6. COLLECTIONS OF DOCUMENTSYou may make a collection consisting of the Document and other documents releasedunder this License, and replace the individual copies of this License in the variousdocuments with a single copy that is included in the collection, provided that youfollow the rules of this License for verbatim copying of each of the documents in allother respects.You may extract a single document from such a collection, and distribute it individu-ally under this License, provided you insert a copy of this License into the extracteddocument, and follow this License in all other respects regarding verbatim copying ofthat document.

Appendix J: Copying This Manual 226

7. AGGREGATION WITH INDEPENDENT WORKSA compilation of the Document or its derivatives with other separate and independentdocuments or works, in or on a volume of a storage or distribution medium, is calledan \aggregate" if the copyright resulting from the compilation is not used to limit thelegal rights of the compilation's users beyond what the individual works permit. Whenthe Document is included an aggregate, this License does not apply to the other worksin the aggregate which are not themselves derivative works of the Document.If the Cover Text requirement of section 3 is applicable to these copies of the Document,then if the Document is less than one half of the entire aggregate, the Document's CoverTexts may be placed on covers that bracket the Document within the aggregate, or theelectronic equivalent of covers if the Document is in electronic form. Otherwise theymust appear on printed covers that bracket the whole aggregate.8. TRANSLATIONTranslation is considered a kind of modi�cation, so you may distribute translationsof the Document under the terms of section 4. Replacing Invariant Sections withtranslations requires special permission from their copyright holders, but you mayinclude translations of some or all Invariant Sections in addition to the original versionsof these Invariant Sections. You may include a translation of this License, and all thelicense notices in the Document, and any Warrany Disclaimers, provided that youalso include the original English version of this License and the original versions ofthose notices and disclaimers. In case of a disagreement between the translation andthe original version of this License or a notice or disclaimer, the original version willprevail.If a section in the Document is Entitled \Acknowledgements", \Dedications", or \His-tory", the requirement (section 4) to Preserve its Title (section 1) will typically requirechanging the actual title.9. TERMINATIONYou may not copy, modify, sublicense, or distribute the Document except as expresslyprovided for under this License. Any other attempt to copy, modify, sublicense ordistribute the Document is void, and will automatically terminate your rights underthis License. However, parties who have received copies, or rights, from you under thisLicense will not have their licenses terminated so long as such parties remain in fullcompliance.10. FUTURE REVISIONS OF THIS LICENSEThe Free Software Foundation may publish new, revised versions of the GNU FreeDocumentation License from time to time. Such new versions will be similar in spiritto the present version, but may di�er in detail to address new problems or concerns.See http://www.gnu.org/copyleft/.Each version of the License is given a distinguishing version number. If the Documentspeci�es that a particular numbered version of this License \or any later version"applies to it, you have the option of following the terms and conditions either of thatspeci�ed version or of any later version that has been published (not as a draft) bythe Free Software Foundation. If the Document does not specify a version number ofthis License, you may choose any version ever published (not as a draft) by the FreeSoftware Foundation.

http://www.gnu.org/copyleft/

Appendix J: Copying This Manual 227

J.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License inthe document and put the following copyright and license notices just after the title page:
Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
``GNU Free Documentation License''.If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the\with...Texts." line with this:

with the Invariant Sections being list their titles , with
the Front-Cover Texts being list , and with the Back-Cover Texts
being list .If you have Invariant Sections without Cover Texts, or some other combination of thethree, merge those two alternatives to suit the situation.If your document contains nontrivial examples of program code, we recommend releas-ing these examples in parallel under your choice of free software license, such as the GNUGeneral Public License, to permit their use in free software.

Command and Variable Index 228

Command and Variable Index

This is an alphabetical list of all the @-commands, assorted Emacs Lisp functions, andseveral variables. To make the list easier to use, the commands are listed without theirpreceding `@'.
!
! (end of sentence). 106

"
" (umlaut accent) . 107

'
' (umlaut accent) . 107

(
(newline) . 106
(space) . 106
(tab) . 106

*
* (force line break) . 117

,
, (cedilla accent) . 107

-
- (discretionary hyphen) . 118

.

. (end of sentence). 106

<
<colon> (suppress widening) 106

=
= (macron accent) . 107

?
? (end of sentence). 106

@
@(literal ` @') . 105

^
^ (circum
ex accent) . 107

`̀
(grave accent) . 107

{
{ (literal ` { ') . 105

}
} (literal ` } ') . 105

\
\ (literal \ in @math) . 110
\emergencystretch . 154
\input (raw TEX startup) . 10
\mag (raw TEX magni�cation) 156

~
~ (tilde accent) . 107

A
aa . 108
AA. 108
acronym. 82
ae . 108
AE. 108
afourlatex . 155
afourpaper . 155
afourwide . 155
alias . 144
anchor . 60
appendix . 50
appendixsec . 51
appendixsection . 51
appendixsubsec . 52
appendixsubsubsec . 52
apply . 132
asis . 96
author . 36

Command and Variable Index 229

B
b (bold font) . 84
buffer-end . 122
bullet . 109
bye. 45, 47

C
c (comment) . 10
cartouche . 92
center . 36
centerchap . 50
chapheading . 50
chapter . 50
cindex . 101
cite . 82
code. 76
columnfractions . 98
command. 81
comment. 10
contents . 46
copying . 33
copyright . 33, 109
cropmarks . 156

D
defcodeindex . 103
defcv . 129
deffn . 124
deffnx . 123
defindex . 103
definfoenclose . 145
defivar . 129
defmac. 124
defmethod . 130, 131
defop . 129
defopt . 126
defspec . 125
deftp . 131
deftypefn . 126
deftypefun . 127
deftypeivar . 129
deftypeop . 130
deftypevar . 128
deftypevr . 127
defun . 124
defvar . 125
defvr . 125
dfn . 81
dircategory . 169
direntry . 169
display . 89
dmn. 107
documentdescription . 41
documentencoding . 141
documentlanguage. 140
dotaccent . 107

dotless . 108
dots . 108

E
email . 82
emph. 83
end. 85, 93
end titlepage . 38
enddots . 108
enumerate . 95
env . 80
equiv . 112
error . 112
evenfooting . 208
evenheading . 208
everyfooting . 208
everyheading . 208
example. 86
exampleindent . 43
exclamdown. 108
exdent . 90
expansion . 111

F
file . 80
filll TEX dimension . 37
finalout . 155
findex . 101
flushleft . 90
flushright . 90
foobar . 123, 126, 127
footnote . 114
footnotestyle . 115
format . 89
forward-word . 121
ftable . 97

G
group . 119

H
H (Hungarian umlaut accent) 107
hbox. 154
heading . 51
headings . 39
headword . 146
html . 136
hyphenation . 118

Command and Variable Index 230

I
i (italic font) . 84
ifclear . 138
ifhtml . 134, 136
ifinfo . 134
ifnothtml . 135
ifnotinfo . 135
ifnotplaintext . 135
ifnottex . 135
ifnotxml . 135
ifplaintext . 134
ifset . 137
iftex . 134
ifxml . 134, 136
ignore . 10
image. 115
include . 202
Info-validate . 215
inforef . 73
insertcopying . 34
isearch-backward . 123
isearch-forward . 123
item . 94, 97, 99
itemize . 93
itemx . 98

K
kbd . 77
kbdinputstyle . 77
key . 78
kindex . 101

L
l . 108
L . 108
lisp . 88
lowersections . 53

M
macro. 142
majorheading . 50
makeinfo-buffer . 163
makeinfo-kill-job . 163
makeinfo-recenter-output-buffer 163
makeinfo-region . 163
math. 110
menu. 61
minus. 109
multitable . 98

N
need. 120
next-error . 163
node. 56
noindent . 91
novalidate . 148

O
o . 108
O. 108
occur . 214
occur-mode-goto-occurrence 19
oddfooting . 208
oddheading . 208
oe . 108
OE. 108
option . 81

P
page. 119
page, within @titlepage . 35
pagesizes . 156
paragraphindent . 43
phoo. 145
pindex . 102
point . 113
pounds. 109
print . 112
printindex . 45
pxref . 72

Q
questiondown . 108
quotation . 86

R
r (Roman font) . 84
raisesections . 53
ref . 71
refill . 218
result . 111
ringaccent . 107
rmacro . 142

S
samp. 78
sc (small caps font) . 83
section . 51
setchapternewpage . 42
setcontentsaftertitlepage 47
setfilename . 31
setshortcontentsaftertitlepage 47

Command and Variable Index 231

settitle . 32
shortcontents . 46
shorttitlepage . 35
smallbook . 155
smalldisplay . 89
smallexample . 89
smallformat . 89, 90
smalllisp . 89
sp (line spacing) . 119
sp (titlepage line spacing) . 36
ss . 108
strong . 83
subheading . 52
subsection . 51
subsubheading . 52
subsubsection . 52
subtitle . 36
summarycontents . 46
syncodeindex . 102
synindex . 103

T
t (typewriter font) . 84
tab . 99
table . 96
tex . 135
tex (command) . 109
texinfo-all-menus-update 21
texinfo-every-node-update 21
texinfo-format-buffer 24, 164
texinfo-format-region 24, 164
texinfo-indent-menu-description 23
texinfo-insert-@code . 17
texinfo-insert-@dfn . 17
texinfo-insert-@end . 17
texinfo-insert-@example 18
texinfo-insert-@item . 17
texinfo-insert-@kbd . 17
texinfo-insert-@node . 17
texinfo-insert-@noindent 17
texinfo-insert-@samp . 17
texinfo-insert-@table . 17
texinfo-insert-@var . 18
texinfo-insert-braces . 18
texinfo-insert-node-lines 23
texinfo-make-menu . 21
texinfo-master-menu . 20
texinfo-multiple-files-update 202
texinfo-multiple-files-update (in brief) 23
texinfo-sequential-node-update 23
texinfo-show-structure 19, 213
texinfo-start-menu-description 18

texinfo-tex-buffer . 25
texinfo-tex-print . 25
texinfo-tex-region . 25
texinfo-update-node . 21
thischapter . 209
thischaptername . 209
thisfile . 209
thispage . 209
thistitle . 209
tie (unbreakable interword space) 119
tieaccent . 107
tindex . 102
title . 36
titlefont . 36
titlepage . 35
today . 209
top . 40
top (@-command) . 59

U
u (breve accent) . 107
ubaraccent . 107
udotaccent . 107
unmacro. 143
unnumbered. 50
unnumberedsec. 51
unnumberedsubsec. 52
unnumberedsubsubsec. 52
up-list . 18
uref . 74
url . 82

V
v (check accent) . 107
value . 136
var . 79
verb . 79
verbatim . 87
verbatiminclude . 88
vindex . 101
vskip TEX vertical skip . 37
vtable . 97

W
w (prevent line break) . 118

X
xml . 136
xref . 67

Concept Index 232

Concept Index

!
<. 108

$
$Id: . 197

(
(dir) as Up node of Top node 59

-
--commands-in-node-names 159
--delete . 171
--dir-file= name. 171
--docbook . 159
--enable-encoding . 159
--entry= text . 171
--error-limit= limit . 159
--fill-column= width . 159
--footnote-style= style 159
--force . 159
--help . 159, 171
--html . 159
--ifhtml . 160
--ifinfo . 160
--ifplaintext . 160
--iftex . 160
--ifxml . 160
--info-dir= dir . 171
--info-file= file . 171
--item= text . 171
--macro-expand= file . 160
--no-headers . 160
--no-ifhtml . 160
--no-ifinfo . 160
--no-ifplaintext . 160
--no-iftex . 160
--no-ifxml . 160
--no-number-footnotes . 161
--no-pointer-validate . 161
--no-split . 160
--no-validate . 161
--no-warn . 161
--number-sections . 161
--output= file . 161
--paragraph-indent= indent 161
--quiet . 171
--reference-limit= limit 161
--remove . 171
--section= sec . 171
--split-size= num. 161
--verbose . 162

--version . 162, 171
--xml . 162
-D dir . 171
-d name. 171
-D var . 159
-E file . 160
-e limit . 159
-e text . 171
-F . 159
-f width . 159
-h . 159, 171
-I dir . 160
-i file . 171
-o file . 161
-P dir . 161
-p indent . 161
-r . 171
-r limit . 161
-s sec . 171
-s style . 159
-V . 162, 171

.

.cshrc initialization �le . 153

.pro�le initialization �le . 153

<
<meta> HTML tag, and document description . . 41
<title > HTML tag . 32
<URL convention, not used 74

?
> . 108

@
@-command list . 172
@-command syntax. 219
@-commands. 8
@-commands in @node, limited support. 162
@-commands in nodename. 58
@include �le sample . 204
@menuparts . 62
@nodeline writing . 57
@value in @node lines. 163
@w, for blank items . 93

\
\̀input ' source line ignored. 31

Concept Index 233

A
A4 paper, printing on . 155
A5 paper, printing on . 155
�a . 108
�A . 108
Abbreviations for keys . 78
Abbreviations, tagging . 82
Abstract of document . 41
Accents, inserting . 107
Acronyms, tagging . 82
Acute accent . 107
Adding a new Info �le . 168
� . 108
� . 108
Aliases, command . 144
All-permissive copying license. 201
Alphabetical @-command list 172
alt attribute for images . 116
alternate text for images . 116
Anchors . 60
Another Info directory . 168
Arguments, repeated and optional 122
ASCII text output . 160
Aspect ratio of images . 116
autoexec.bat . 169
automake, and version info 198
Automatic pointer creation with makeinfo 60
Automatically insert nodes, menus 19
Auxiliary �les, avoiding . 148

B
B5 paper, printing on . 156
Back-end output formats . 4
Backslash in macros . 142
Backslash, and macros. 143
Badly referenced nodes. 215
Bastard title page . 35
Batch formatting for Info . 164
Beebe, Nelson. 5
Beginning a Texinfo �le . 29
Beginning line of a Texinfo �le 30
Berry, Karl . 14
Big points . 116
Black rectangle in hardcopy 154
Blank lines . 119
Blank lines, as paragraph separator 9
Body of a macro . 142
Bolio . 15
Book characteristics, printed 7
Book, printing small . 155
BoTEX . 15
Box with rounded corners . 92
Box, ugly black in hardcopy 154
Braces and argument syntax 219
Braces, in macro arguments 143
Braces, inserting. 105
Braces, when to use. 9

Breaks in a line . 117
Breve accent . 107
Bu�er formatting and printing 24
Bugs, reporting . 3
Bullets, inserting . 108

C
Case in node name. 58
Case, not altering in @code. 76
Catching errors with Info formatting 210
Catching errors with T EX formatting 211
Catching mistakes . 210
Categories, choosing. 170
Cedilla accent . 107
Centimeters . 116
Chapter structuring . 48
Chapters, formatting one at a time 148
Characteristics, printed books or manuals 7
Characters, invalid in node name 58
Chassell, Robert J.. 14
Check accent. 107
Checking for badly referenced nodes. 215
Checklist for bug reports . 3
Ciceros . 116
Circum
ex accent . 107
code, arg to @kbdinputstyle 77
Colon in nodename . 58
colon, last in INFOPATH. 169
Column widths, de�ning for multitables 98
Combining indices . 102
Comma in nodename. 58
Comma, in macro arguments 143
Command aliases. 144
Command de�nitions . 132
Command names, indicating 81
Command syntax . 219
Commands to insert special characters 105
Commands using raw TEX 135
Commands, inserting them 17
Comments . 10
Compile command for formatting 152
Compressed �les, reading. 171
Conditionally visible text . 134
Conditions for copying Texinfo 2
Contents, after title page . 47
Contents, Table of . 46
Contents-like outline of �le structure 19
Conventions for writing de�nitions 131
Conventions, syntactic . 9
Conversion, from Docbook to Texinfo 4
Copying conditions . 2
Copying Permissions . 33
Copying software . 43
Copying text, including . 34
Copyright holder for FSF works 34
Copyright page . 37
Copyright page, for plain text 34

Concept Index 234

Copyright word, always in English 34
Correcting mistakes . 210
Create nodes, menus automatically. 19
Creating an Info �le . 158
Creating an unsplit �le . 215
Creating index entries . 101
Creating pointers with makeinfo 60
Cropmarks for printing . 156
Cross reference parts. 66
Cross references. 65
Cross references using@inforef 73
Cross references using@pxref. 72
Cross references using@ref. 71
Cross references using@xref. 67
Cross-reference targets, arbitrary 60
Custom page sizes. 156
Customize Emacs package

(Development/Docs/Texinfo) 152
Customized highlighting . 145
Customizing of TEX for Texinfo 153
CVS $Id: . 197

D
Dashes, in source. 9
Debugging the Texinfo structure 210
Debugging with Info formatting 210
Debugging with TEX formatting 211
De�ning indexing entries . 101
De�ning macros . 142
De�ning new indices . 103
De�ning new Texinfo commands 142
De�nition commands . 121
De�nition conventions . 131
De�nition lists, typesetting 96
De�nition template . 121
De�nitions grouped together 123
Delimiter character, for verbatim 79
Depth of text area . 156
Description for menu, start 18
Description of document . 41
Details of macro usage. 144
Didôt points . 116
Di�erent cross reference commands. 65
Dimension formatting . 107
Dimensions and image sizes. 116
Dir categories, choosing. 170
`dir ' directory for Info installation 167
`dir ' �le listing . 168
`dir ' �le, creating your own 169
`dir ' �les and Info directories 168
Dir �les, compressed . 171
`dir ', created by install-info 170
Display formatting . 89
Displayed equations. 110
distinct , arg to @kbdinputstyle 77
Distorting images . 116
Distribution . 43

DocBook output . 5
Docbook, converting to Texinfo 4
Document description . 41
Document input encoding 141
Document language, declaring 140
Document Permissions . 33
Documentation identi�cation 197
Dot accent . 107
Dotless i, j . 108
Dots, inserting . 108
Double-colon menu entries. 62
DTD, for Texinfo XML . 5
Dumping a .fmt �le . 154
DVI �le . 147
DVI output . 5
Dvips . 5

E
Ellipsis, inserting . 108
em-dash . 109
Emacs. 16
Emacs shell, format, print from 150
Emacs-W3 . 4
Emphasizing text . 83
Emphasizing text, font for . 83
enable . 128
Encoding, declaring . 141
`End' node footnote style . 114
End of header line . 33
End titlepage starts headings 38
Ending a Sentence. 106
Ending a Texinfo �le . 45
Entries for an index . 101
Entries, making index . 100
Enumeration . 95
Environment indentation . 43
epsf.tex . 116
epsf.tex , installing . 153
Equations, displayed . 110
Equivalence, indicating it . 112
Error message, indicating it 112
Errors, parsing . 163
Es-zet . 108
European A4 paper . 155
Evaluation glyph . 111
Example beginning of Texinfo �le 29
Example indentation . 43
Example menu . 63
example, arg to @kbdinputstyle 77
Examples in smaller fonts . 89
Examples, formatting them 86
Examples, glyphs for . 110
Expanding macros . 143
Expansion, indicating it . 111
Expressions in a program, indicating 76

Concept Index 235

F
F.B.I., as acronym . 82
FDL, GNU Free Documentation License 221
File beginning . 29
File ending . 45
File name collision . 31
File section structure, showing it 19
Filling paragraphs . 218
Final output . 154
Finding badly referenced nodes. 215
Fine-tuning, and hyphenation 118
First line of a Texinfo �le . 30
First node . 58
Floating accents, inserting 107
Flooding . 72
Fonts for indices . 103
Fonts for printing, not for Info 84
Footings . 206
Footnotes . 114
Format a dimension . 107
Format and print hardcopy 147
Format and print in Texinfo mode 150
Format �le, dumping . 154
Format with the compile command 152
Format, print from Emacs shell 150
Formats for images . 115
Formatting a �le for Info . 158
Formatting commands . 8
Formatting examples . 86
Formatting for Info . 24
Formatting for printing . 24
Formatting headings and footings 206
Formatting requirements . 152
Formatting with tex and texindex 147
Formulas, mathematical . 110
Fox, Brian . 14
Free Documentation License, including entire

. 198
Free Software Directory . 170
Frequently used commands, inserting 17
fubar . 128
Full texts, GNU . 197
Function de�nitions . 132

G
General syntactic conventions 9
Generating menus with indices 45
Generating plain text �les 160
German S. 108
GIF, unsupported due to patents 116
Global Document Commands 41
Globbing . 148
Glyphs . 110
GNU Emacs. 16
GNU Emacs shell, format, print from 150
GNU Free Documentation License, including entire

. 198

GNU sample texts . 197
Going to other Info �les' nodes 63
Grave accent . 107
Group (hold text together vertically) 119
Grouping two de�nitions together 123

H
Hardcopy, printing it . 147
`hboxes', overfull . 154
Header for Texinfo �les . 30
Header of a Texinfo �le . 30
Headings. 206
Headings, page, begin to appear. 38
Height of images. 116
Height of text area . 156
help2man. 5
Highlighting text . 75
Highlighting, customized . 145
Hints . 191
History of Texinfo . 15
Holder of copyright for FSF works 34
Holding text together vertically 119
href , producing HTML . 74
HTML . 166
HTML output . 4
HTML, including raw . 135
http-equiv, and charset . 141
Hungarian umlaut accent . 107
Hurricanes . 71
hyphen . 109
Hyphenation patterns, language-dependent . . . 140
Hyphenation, helping T EX do 118
Hyphenation, preventing . 118

I
� . 108
Identi�cation of documentation 197
If text conditionally visible 134
Ignored before @setfilename 31
Ignored text . 10
Image formats . 115
Images, inserting . 115
Inches . 116
Include �le sample . 204
Include �les . 202
Include �les requirements . 203
Include �les, and section levels 53
Including a �le verbatim . 88
Including permissions text . 34
Indentation undoing . 90
Indenting environments . 43
Indenting paragraphs, control of 43
Index entries . 101
Index entries, making . 100
Index entry writing . 101
Index �le names . 147

Concept Index 236

Index font types . 101
Indexing commands, prede�ned 101
Indexing table entries automatically 97
Indicating commands, de�nitions, etc. 75
Indicating evaluation . 111
Indices. 100
Indices, combining them . 102
Indices, de�ning new . 103
Indices, printing and menus 45
Indices, sorting . 147
Indices, two letter names . 102
Indirect sub�les . 165
Info batch formatting . 164
Info �le installation . 167
Info �le name, choosing . 31
Info �le, listing a new . 168
Info �le, splitting manually 216
Info �les . 6
Info formatting . 24
Info installed in another directory 168
Info output . 4
Info validating a large �le 215
Info, creating an online �le 158
Info-directory-list . 168
Info; other �les' nodes . 63
INFOPATH. 169
Initialization �le for T EX input 153
Input encoding, declaring . 141
Insert nodes, menus automatically 19
Inserting @, braces. 105
Inserting accents. 107
Inserting dots . 108
Inserting ellipsis . 108
Inserting frequently used commands 17
Inserting space . 105
Inserting special characters and symbols. 105
ÌNSTALL' �le, generating . 160

install-info . 170
Installing an Info �le . 167
Installing Info in another directory 168
Internationalization . 140
Introduction to Texinfo . 3
Introduction, as part of �le 44
Invalid characters in node names. 58
Invoking macros . 143
Invoking nodes, including in dir �le 170
ISO 639 codes. 140
Itemization . 93

J
� . 108
JPG image format . 116

K
Keyboard input . 77
Keys, recommended names. 78
Keywords, indicating . 76
Knuth, Donald . 7

L
 l . 108
 L . 108
Language codes. 140
Language, declaring. 140
Larger or smaller pages. 156
Legal paper, printing on . 156
Length of �le names . 31
Less cluttered menu entry . 62
License agreement. 43
License for all-permissive copying 201
License for verbatim copying 200
Line breaks . 117
Line breaks, preventing . 118
Line length, column widths as fraction of 98
Line spacing. 119
Lisp example . 88
Lisp examples in smaller fonts 89
List of @-commands. 172
Listing a new Info �le . 168
Lists and tables, making . 93
Local variables . 152
Location of menus . 61
Looking for badly referenced nodes. 215
lpr (DVI print command) 149
lpr -d, replacements on MS-DOS/MS-Windows

. 149
Lynx . 4

M
Macro de�nitions . 132, 142
Macro details . 144
Macro invocation . 143
Macron accent. 107
Macros . 142
Macros in de�nition commands 122
Macros, unde�ning . 143
Magni�ed printing . 156
mailto link . 82
makeinfo . 4
makeinfo inside Emacs. 163
makeinfo options . 158
Making a printed manual . 147
Making a tag table automatically 165
Making a tag table manually 216
Making cross references. 65
Making line and page breaks 117
Making lists and tables . 93
Man page output, not supported 5
Man page, reference to. 74

Concept Index 237

Manual characteristics, printed 7
Margins on page, not controllable 156
Marking text within a paragraph 75
Marking words and phrases. 75
Master menu . 40
Mathematical expressions. 110, 135
Menu description, start . 18
Menu entries with two colons 62
Menu example. 63
Menu location . 61
Menu parts . 62
Menu writing . 61
Menu, master . 40
Menus . 61
Menus generated with indices. 45
Menus, omitting . 160
meta HTML tag, and charset 141
META key . 78
Meta-syntactic chars for arguments 122
Millimeters . 116
Minimal requirements for formatting 152
Minimal Texinfo �le (requirements) 10
Mistakes, catching . 210
Mode, using Texinfo . 16
Mozilla . 4
Multiple spaces . 106
Multitable column widths . 98
Multitable rows . 99
Must have in Texinfo �le . 10
Mutually recursive macros 142

N
Names for indices. 102
Names of index �les . 147
Names recommended for keys. 78
Naming a `Top' Node in references. 71
NASA, as acronym . 82
Navigation links, omitting 160
Need space at page bottom. 120
New index de�ning . 103
New Info �le, listing it in ` dir ' �le 168
New Texinfo commands, de�ning 142
Newlines, as blank lines. 9
Next node of Top node . 59
Node line requirements. 58
Node line writing . 57
Node name must be unique. 58
Node name, should not contain @-commands. . 58
Node names, choosing. 57
Node names, invalid characters in 58
Node separators, omitting 160
Node, `Top' . 39
Node, de�ned . 56
Nodes for menus are short. 61
Nodes in other Info �les . 63
Nodes, catching mistakes. 210
Nodes, checking for badly referenced. 215

Non-breakable space, �xed 118
Non-breakable space, variable. 119
Not ending a sentence. 106

O
O'Dea, Brendan . 5
� . 108
� . 108
Obtaining T EX . 220
Occurrences, listing with @occur. 214
� . 108
� . 108
Optional and repeated arguments 122
Options for makeinfo . 158
Ordinary T EX commands, using 135
Other Info �les' nodes . 63
Outline of �le structure, showing it 19
Output �le splitting . 160
Output formats . 4
Output formats, supporting more 5
Overfull ` hboxes' . 154
Overview of Texinfo . 3
Owner of copyright for FSF works 34

P
Page breaks. 117, 119
Page delimiter in Texinfo mode 19
Page headings. 206
Page numbering . 206
Page sizes for books. 155
Page sizes, customized. 156
page-delimiter . 19
Pages, starting odd . 42
Paper size, A4. 155
Paragraph indentation control 43
Paragraph separator . 9
Paragraph, marking text within 75
Paragraphs, �lling . 218
Parameters to macros. 142
Parentheses in nodename. 58
Parsing errors . 163
Part of �le formatting and printing 24
Parts of a cross reference. 66
Parts of a master menu . 40
Parts of a menu . 62
Patches, contributing . 3
PDF output . 5, 157
pdfcolor.tex , installing . 153
pdftex . 5, 157
pdftex , and images. 115
Period in nodename. 58
Periods, inserting . 106
Permissions text, including 34
Permissions, printed . 37
Picas . 116
Pictures, inserting . 115

Concept Index 238

Pinard, Fran�cois . 14
plain TEX . 135
Plain text output . 4, 160
PNG image format . 116
Point, indicating in a bu�er 113
Pointer creation with makeinfo 60
Pointer validation with makeinfo 162
Pointer validation, suppressing 148, 161
Points (dimension) . 116
Prede�ned indexing commands 101
Prede�ned names for indices. 102
Preparing for TEX . 153
Preventing line and page breaks 117
Previous node of Top node 59
Print and format in Texinfo mode 150
Print, format from Emacs shell 150
Printed book and manual characteristics 7
Printed output, indicating it 112
Printed permissions . 37
Printing a region or bu�er . 24
Printing an index . 45
Printing cropmarks . 156
Printing DVI �les, on MS-DOS/MS-Windows

. 149
Printing hardcopy . 147
Problems, catching. 210
Program names, indicating 81
Prototype row, column widths de�ned by 98

Q
Quotation characters (`'), in source 9
Quotations . 86

R
ragged left . 90
ragged right . 90
Raising and lowering sections. 53
Raw formatter commands 135
RCS $Id: . 197
Recommended names for keys. 78
Rectangle, black in hardcopy 154
Recursion, mutual . 142
Recursive macro invocations. 142
Reference to @-commands. 172
References. 65
References using@inforef . 73
References using@pxref. 72
References using@ref. 71
References using@xref . 67
Referring to other Info �les 63
Re�lling paragraphs . 218
Region formatting and printing 24
Region printing in Texinfo mode 150
Reid, Brian . 15
Repeated and optional arguments 122
Reporting bugs . 3

Required in Texinfo �le . 10
Requirements for formatting 152
Requirements for include �les 203
Requirements for updating commands 22
Reserved words, indicating 76
Restrictions on node names. 58
Result of an expression. 111
ridt.eps . 116
Ring accent . 107
Rounded rectangles, around examples. 92
Rows, of a multitable . 99
Running an Info formatter . 24
Running Info-validate . 215
Running macros . 143
Running makeinfo in Emacs. 163

S
Sample @include �le . 204
Sample function de�nition 132
Sample Texinfo �le, no comments 196
Sample Texinfo �le, with comments 12
Sample Texinfo �les . 196
Sample texts, GNU . 197
Scaled points. 116
Schwab, Andreas . 14
Scribe . 15
Sea surges. 71
Section structure of a �le, showing it 19
Sections, raising and lowering. 53
Sentence ending punctuation 106
Sentence non-ending punctuation 106
`Separate' footnote style. 115
SGML-tools output format . 5
Sharp S. 108
Shell formatting with tex and texindex 147
Shell printing, on MS-DOS/MS-Windows 149
Shell, format, print from . 150
Shell, running makeinfo in 163
Short nodes for menus. 61
Short table of contents . 46
Showing the section structure of a �le 19
Showing the structure of a �le 213
shrubbery . 137
Site-wide Texinfo con�guration �le 153
Size of printed book . 155
slanted typewriter font, for @kbd. 77
Small book size. 155
Small caps font . 83
Small examples. 89
Software copying permissions. 43
Sorting indices . 147
Source �le format . 4
Source �les, characters used. 9
Space, inserting horizontal 106
Space, inserting vertical . 119
Spaces in macros. 142
Spaces, in menus. 62

Concept Index 239

Spacing, inserting . 105
Special characters, commands to insert. 105
Special insertions. 105
Special typesetting commands 108
Specifying index entries . 101
Splitting an Info �le manually 216
Splitting of output �les . 160
� . 108
Stallman, Richard M. 14
Start of header line . 31
Starting chapters . 42
Structure of a �le, showing it 19
Structure, catching mistakes in 210
Structuring of chapters . 48
Subsection-like commands. 52
Subsub commands. 52
Suggestions for Texinfo, making. 3
Summary of document . 41
Syntactic conventions . 9
Syntactic tokens, indicating 76
Syntax, of @-commands. 219
Syntax, optional & repeated arguments 122

T
Table of contents . 46
Table of contents, after title page 47
Tables and lists, making . 93
Tables with indexes . 97
Tables, making multi-column 98
Tables, making two-column 96
Tabs; don't use! . 9
Tag table, making automatically 165
Tag table, making manually 216
Targets for cross-references, arbitrary. 60
Template for a de�nition . 121
TEX commands, using ordinary 135
TEX index sorting . 147
TEX input initialization . 153
TEX, how to obtain . 220
texi2dvi . 148
texi2dvi (shell script) . 149
texi2roff , unsupported software 7
texindex . 147
Texinfo commands, de�ning new 142
Texinfo �le beginning . 29
Texinfo �le ending . 45
Texinfo �le header . 30
Texinfo �le minimum . 10
Texinfo �le section structure, showing it 19
Texinfo history . 15
Texinfo mode . 16
Texinfo overview . 3
Texinfo printed book characteristics 7
Texinfo requires @setfilename 31
Texinfo, introduction to . 3
texinfo.cnf . 32
texinfo.cnf installation . 153

texinfo.tex , installing . 153
TEXINPUTS. 153
TEXINPUTSenvironment variable 153
Text width and height . 156
Text, conditionally visible 134
Text, marking up . 75
Thin space between number, dimension. 107
Tie-after accent . 107
Tied space. 119
Tilde accent . 107
time-stamp.el . 198
Tips . 191
Title page . 35
Title page, bastard . 35
Title page, for plain text . 34
Titlepage end starts headings 38
Top node . 39
Top node example . 40
Top node is �rst . 58
`Top' node naming for references. 71
Tree structuring . 48
Two `First' Lines for @deffn. 123
Two letter names for indices 102
Two named items for @table 98
Two part menu entry . 62
t̀xi- cc.tex ' . 140

Typesetting commands for dots, etc. 108

U
Ugly black rectangles in hardcopy 154
Umlaut accent . 107
Unbreakable space, �xed . 118
Unbreakable space, variable 119
Uncluttered menu entry . 62
Unde�ning macros . 143
Underbar accent . 107
Underdot accent . 107
Uniform resource locator, indicating 82
Uniform resource locator, referring to 74
Unique nodename requirement. 58
Unprocessed text . 10
Unsplit �le creation . 215
Up node of Top node. 59
UPDATEDAutomake variable 198
Updating nodes and menus. 19
Updating requirements . 22
URI syntax for Info . 7
URL, indicating . 82
URL, referring to . 74
Usage tips. 191
user input . 77
User options, marking . 126
User-de�ned Texinfo commands 142
Using Texinfo in general . 3

Concept Index 240

V
Validating a large �le . 215
Validation of pointers . 162
Value of an expression, indicating 111
Verbatim copying license . 200
Verbatim environment . 87
Verbatim in-line text . 79
Verbatim, include �le . 88
VERSIONAutomake variable 198
version number, for install-info 171
Vertically holding text together 119
Visibility of conditional text 134

W
W3 consortium . 4
Weinberg, Zack . 14
Weisshaus, Melissa. 14
White space, excessive. 117
Whitespace in macros. 142
Whitespace, inserting . 106
Width of images . 116
Width of text area . 156

Widths, de�ning multitable column 98
Wildcards . 148
Words and phrases, marking them 75
Writing a menu . 61
Writing an @nodeline . 57
Writing index entries . 101

X
Xdvi . 5
XML output . 5
XML, including raw . 135
XPM image format. 116

Y
Years, in copyright line . 34

Z
Zaretskii, Eli . 14
Zuhn, David D. 14

	Texinfo Copying Conditions
	Overview of Texinfo
	Reporting Bugs
	Using Texinfo
	Output Formats
	Info Files
	Printed Books
	@-commands
	General Syntactic Conventions
	Comments
	What a Texinfo File Must Have
	Six Parts of a Texinfo File
	A Short Sample Texinfo File
	History

	Using Texinfo Mode
	The Usual GNU Emacs Editing Commands
	Inserting Frequently Used Commands
	Showing the Section Structure of a File
	Updating Nodes and Menus
	Updating Requirements
	Other Updating Commands

	Formatting for Info
	Formatting and Printing
	Texinfo Mode Summary

	Beginning a Texinfo File
	Sample Texinfo File Beginning
	Texinfo File Header
	The First Line of a Texinfo File
	Start of Header
	@setfilename: Set the output file name
	@settitle: Set the document title
	End of Header

	Document Permissions
	@copying: Declare Copying Permissions
	@insertcopying: Include Permissions Text

	Title and Copyright Pages
	@titlepage
	@titlefont, @center, and @sp
	@title, @subtitle, and @author
	Copyright Page
	Heading Generation
	The @headings Command

	The `Top' Node and Master Menu
	Top Node Example
	Parts of a Master Menu

	Global Document Commands
	@documentdescription: Summary Text
	@setchapternewpage:
	Paragraph Indenting
	@exampleindent: Environment Indenting

	Software Copying Permissions

	Ending a Texinfo File
	Printing Indices and Menus
	Generating a Table of Contents
	@bye File Ending

	Chapter Structuring
	Tree Structure of Sections
	Structuring Command Types
	@top
	@chapter
	@unnumbered and @appendix
	@majorheading, @chapheading
	@section
	@unnumberedsec, @appendixsec, @heading
	The @subsection Command
	The @subsection-like Commands
	The `subsub' Commands
	@raisesections and @lowersections

	Nodes
	Two Paths
	Node and Menu Illustration
	The @node Command
	Choosing Node and Pointer Names
	How to Write an @node Line
	@node Line Tips
	@node Line Requirements
	The First Node
	The @top Sectioning Command

	Creating Pointers with makeinfo
	@anchor: Defining Arbitrary Cross-reference Targets

	Menus
	Writing a Menu
	The Parts of a Menu
	Less Cluttered Menu Entry
	A Menu Example
	Referring to Other Info Files

	Cross References
	Different Cross Reference Commands
	Parts of a Cross Reference
	@xref
	@xref with One Argument
	@xref with Two Arguments
	@xref with Three Arguments
	@xref with Four and Five Arguments

	Naming a `Top' Node
	@ref
	@pxref
	@inforef
	@uref{@tt @char 123}url[, text][, replacement]{@tt @char 125}

	Marking Words and Phrases
	Indicating Definitions, Commands, etc.
	@code{@tt @char 123}sample-code{@tt @char 125}
	@kbd{@tt @char 123}keyboard-characters{@tt @char 125}
	@key{@tt @char 123}key-name{@tt @char 125}
	@samp{@tt @char 123}text{@tt @char 125}
	@verb{@tt @char 123}<char>text<char>{@tt @char 125}
	@var{@tt @char 123}metasyntactic-variable{@tt @char 125}
	@env{@tt @char 123}environment-variable{@tt @char 125}
	@file{@tt @char 123}file-name{@tt @char 125}
	@command{@tt @char 123}command-name{@tt @char 125}
	@option{@tt @char 123}option-name{@tt @char 125}
	@dfn{@tt @char 123}term{@tt @char 125}
	@cite{@tt @char 123}reference{@tt @char 125}
	@acronym{@tt @char 123}acronym{@tt @char 125}
	@url{@tt @char 123}uniform-resource-locator{@tt @char 125}
	@email{@tt @char 123}email-address[, displayed-text]{@tt @char 125}

	Emphasizing Text
	@emph{@tt @char 123}text{@tt @char 125} and @strong{@tt @char 123}text{@tt @char 125}
	@sc{@tt @char 123}text{@tt @char 125}: The Small Caps Font
	Fonts for Printing, Not Info

	Quotations and Examples
	Block Enclosing Commands
	@quotation
	@example: Example Text
	@verbatim: Literal Text
	@verbatiminclude file: Include a File Verbatim
	@lisp: Marking a Lisp Example
	@small...{} Block Commands
	@display and @smalldisplay
	@format and @smallformat
	@exdent: Undoing a Line's Indentation
	@flushleft and @flushright
	@noindent: Omitting Indentation
	@cartouche: Rounded Rectangles Around Examples

	Lists and Tables
	@itemize: Making an Itemized List
	@enumerate: Making a Numbered or Lettered List
	Making a Two-column Table
	Using the @table Command
	@ftable and @vtable
	@itemx

	Multi-column Tables
	Multitable Column Widths
	Multitable Rows

	Indices
	Making Index Entries
	Predefined Indices
	Defining the Entries of an Index
	Combining Indices
	@syncodeindex
	@synindex

	Defining New Indices

	Special Insertions
	Inserting @ and Braces
	Inserting @ with @@
	Inserting {@tt @char 123} and {@tt @char 125}with @{@tt @char 123} and @{@tt @char 125}

	Inserting Space
	Not Ending a Sentence
	Ending a Sentence
	Multiple Spaces
	@dmn{@tt @char 123}dimension{@tt @char 125}: Format a Dimension

	Inserting Accents
	Inserting Ellipsis and Bullets
	@dots{@tt @char 123}{@tt @char 125} (...{}) and @enddots{@tt @char 123}{@tt @char 125} (@unhbox @voidb@x @hbox to 2em{@hskip 0pt plus 0.25fil minus 0.25fil .@hss .@hss .@hss .@hskip 0pt plus 0.5fil minus 0.5fil }@spacefactor =3000 {})
	@bullet{@tt @char 123}{@tt @char 125} (@implicitmath @ptexbullet @implicitmath {})

	Inserting TeX{} and the Copyright Symbol
	@TeX{@tt @char 123}{@tt @char 125} (TeX{})
	@copyright{@tt @char 123}{@tt @char 125} ({@lineskiplimit -@maxdimen @unhbox @voidb@x @vtop {@baselineskip @z@skip @lineskip .25ex@everycr {}@tabskip @z@skip @halign {##@crcr @hfil @raise .07ex@hbox {c}@hfil @crcr @unhbox @voidb@x @hbox {$@mathsurround @z@ @mathchar "20D$}@crcr }}}{})

	@pounds{@tt @char 123}{@tt @char 125} ({@fam @itfam @tenit @$}{}): Pounds Sterling
	@minus{@tt @char 123}{@tt @char 125} (@implicitmath -@implicitmath {}): Inserting a Minus Sign
	@math: Inserting Mathematical Expressions
	Glyphs for Examples
	Glyphs Summary
	@result{@tt @char 123}{@tt @char 125} (@unhbox @voidb@x @raise .15ex@hbox to 1em{@hfil $@Rightarrow $@hfil }{}): Indicating Evaluation
	@expansion{@tt @char 123}{@tt @char 125} (@unhbox @voidb@x @raise .1ex@hbox to 1em{@hfil $@mapstochar @rightarrow $@hfil }{}): Indicating an Expansion
	@print{@tt @char 123}{@tt @char 125} (@unhbox @voidb@x @lower .1ex@hbox to 1em{@hfil $@dashv $@hfil }{}): Indicating Printed Output
	@error{@tt @char 123}{@tt @char 125} (@unhbox @voidb@x @lower .7ex@copy @errorbox {}): Indicating an Error Message
	@equiv{@tt @char 123}{@tt @char 125} (@unhbox @voidb@x @lower .1ex@hbox to 1em{@hfil $@ptexequiv $@hfil }{}): Indicating Equivalence
	@point{@tt @char 123}{@tt @char 125} ($@star ${}): Indicating Point in a Buffer

	Footnotes
	Footnote Commands
	Footnote Styles

	Inserting Images

	Making and Preventing Breaks
	Break Commands
	@*: Generate Line Breaks
	@- and @hyphenation: Helping TeX{} Hyphenate
	@w{@tt @char 123}text{@tt @char 125}: Prevent Line Breaks
	@tie{@tt @char 123}{@tt @char 125}: Inserting an Unbreakable Space
	@sp n: Insert Blank Lines
	@page: Start a New Page
	@group: Prevent Page Breaks
	@need mils: Prevent Page Breaks

	Definition Commands
	The Template for a Definition
	Optional and Repeated Arguments
	Two or More `First' Lines
	The Definition Commands
	Functions and Similar Entities
	Variables and Similar Entities
	Functions in Typed Languages
	Variables in Typed Languages
	Object-Oriented Programming
	Data Types

	Conventions for Writing Definitions
	A Sample Function Definition

	Conditionally Visible Text
	Conditional Commands
	Conditional Not Commands
	Raw Formatter Commands
	@set, @clear, and @value
	@set and @value
	@ifset and @ifclear
	@value Example

	Internationalization
	@documentlanguage cc: Set the Document Language
	@documentencoding enc: Set Input Encoding

	Defining New Texinfo Commands
	Defining Macros
	Invoking Macros
	Macro Details
	@alias new=existing
	definfoenclose: Customized Highlighting

	Formatting and Printing Hardcopy
	Use TeX{}
	Format with tex and texindex
	Format with texi2dvi
	Shell Print Using lpr -d
	From an Emacs Shell
	Formatting and Printing in Texinfo Mode
	Using the Local Variables List
	TeX{} Formatting Requirements Summary
	Preparing for TeX{}
	Overfull ``hboxes''
	Printing ``Small'' Books
	Printing on A4 Paper
	@pagesizes [width][, height]: Custom Page Sizes
	Cropmarks and Magnification
	PDF Output

	Creating and Installing Info Files
	Creating an Info File
	makeinfo Preferred
	Running makeinfo from a Shell
	Options for makeinfo
	Pointer Validation
	Running makeinfo Within Emacs
	The texinfo-format...{} Commands
	Batch Formatting
	Tag Files and Split Files
	Generating HTML

	Installing an Info File
	The Directory File dir
	Listing a New Info File
	Info Files in Other Directories
	Installing Info Directory Files
	Invoking install-info

	@-Command List
	Tips and Hints
	Sample Texinfo Files
	Short Sample
	GNU Sample Texts
	Verbatim Copying License
	All-permissive Copying License

	Include Files
	How to Use Include Files
	texinfo-multiple-files-update
	Include Files Requirements
	Sample File with @include
	Evolution of Include Files

	Page Headings
	Standard Heading Formats
	Specifying the Type of Heading
	How to Make Your Own Headings

	Formatting Mistakes
	Catching Errors with Info Formatting
	Catching Errors with TeX{} Formatting
	Using texinfo-show-structure
	Using occur
	Finding Badly Referenced Nodes
	Running Info-validate
	Creating an Unsplit File
	Tagifying a File
	Splitting a File Manually

	Refilling Paragraphs
	@-Command Syntax
	How to Obtain TeX{}
	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Command and Variable Index
	Concept Index

