Extending XEmacs using C and C ++

Version 1.0, September 1998

J. Kean Johnston

Copyright © 1998 J. Kean Johnston.

Version 1.0
September, 1998.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled “GNU General
Public License” is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the section entitled
“GNU General Public License” may be included in a translation approved by the Free
Software Foundation instead of in the original English.

Chapter 1: Introduction 1

1 Introduction

XEmacs is a powerful, extensible editor. The traditional way of extending the function-
ality of XEmacs is to use its built-in Lisp language (called Emacs Lisp, or Elisp for short).
However, while Elisp is a full programming language and capable of extending XEmacs in
more ways than you can imagine, it does have its short-comings.

Firstly, Elisp is an interpreted language, and this has serious speed implications. Like
all other interpreted languages (like Java), Elisp is often suitable only for certain types of
application or extension. So although Elisp is a general purpose language, and very high
level, there are times when it is desirable to descend to a lower level compiled language for
speed purposes.

Secondly, Elisp (or Lisp in general) is not a very common language any more, except for
certain circles in the computer industry. C is a far more commonly known language, and
because it is compiled, more suited to a wider range of applications, especially those that
require low level access to a system or need to be as quick as possible.

This manual describes a new way of extending XEmacs, by using dynamically loadable
modules (also known as dynamically loadable libraries (DLLs), dynamic shared objects
(DSOs) or just simply shared objects), which can be written in C or C++ and loaded into
XEmacs at any time. I sometimes refer to this technology as CEmacs which is short for C
Extensible Emacs

XEmacs modules are configured into and installed with XEmacs by default on all systems
that support loading of shared objects. From a users perspective, the internals of XEmacs
modules are irrelevant. All a user will ever need to know about shared objects is the name
of the shared object when they want to load a given module. From a developers perspective
though, a lot more is provided.

e Of primary interest is the ellcc program. This program is created during compile
time, and is intended to abstract compiler specific characteristics from the developer.
This program is called to compile and link all objects that will make up the final
shared object, and accepts all common C compiler flags. ellcc also sets up the correct
environment for compiling modules by enabling any special compiler modes (such as
PIC mode), setting the correct include paths for the location of XEmacs internal header
files etc. The program will also invoke the linker correctly to created the final shared
object which is loaded into XEmacs.

e CEmacs also makes all of the relevant XEmacs internal header files available for module
authors to use. This is often required to get data structure definitions and external
variable declarations. The header files installed include the module specific header file
‘emodules.h’. Due to the nature of dynamic modules, most of the internals of XEmacs
are exposed. See section “Top” in XEmacs Internals Manual, for a more complete
discussion on how to extend and understand XEmacs. All of the rules for C modules
are discussed there.

e Part of the XEmacs distribution is a set of sample modules. These are not installed
when XEmacs is, but remain in the XEmacs source tree. These modules live in the
directory ‘modules’, which is a sub-directory of the main XEmacs source code directory.
Please look at the samples carefully, and maybe even use them as a basis for making
your own modules. Most of the concepts required for writing extension modules are
covered in the samples.

2 Extending Emacs using C Modules

e Last, but not least is this manual. This can be viewed from within XEmacs, and it
can be printed out as well. It is the intention of this document that it will describe
everything you need to know about extending XEmacs in C. If you do not find this to
be the case, please contact the author(s).

The rest of this document will discuss the actual mechanics of XEmacs modules and work
through several of the samples. Please be sure that you have read the XEmacs Internals
Manual and understand everything in it. The concepts there apply to all modules. This
document may have some overlap, but it is the internals manual which should be considered
the final authority. It will also help a great deal to look at the actual XEmacs source code
to see how things are done.

Chapter 2: Anatomy of a Module 3

2 Anatomy of a Module

Each dynamically loadable XEmacs extension (hereafter referred to as a module)
has a certain compulsory format, and must contain several pieces of information and
several mandatory functions. This chapter describes the basic layout of a module, and
provides a very simple sample. The source for this sample can be found in the file
‘modules/simple/sample.c’ in the main XEmacs source code tree.

2.1 Required Header File

Every module must include the file ‘<emodules.h>’. This will include several other
XEmacs internal header files, and will set up certain vital macros. One of the most impor-
tant files included by ‘emodules.h’ is the generated ‘config.h’ file, which contains all of
the required system abstraction macros and definitions. Most modules will probably require
some pre-processor conditionals based on constants defined in ‘config.h’. Please read that
file to familiarize yourself with the macros defined there.

Depending on exactly what your module will be doing, you will probably need to include
one or more of the XEmacs internal header files. When you #include <emodules.h>, you
will get a few of the most important XEmacs header files included automatically for you.
The files included are:

‘lisp.h’ This file contains most of the macros required for declaring Lisp object types,
macros for accessing Lisp objects, and global variable declarations.

‘sysdep.h’
All system dependent declarations and abstraction macros live here. You should
never call low level system functions directly. Rather, you should use the ab-
straction macros provided in this header file.

‘window.h’
This header file defines the window structures and Lisp types, and provides
functions and macros for manipulating multiple XEmacs windows.

‘buffer.h’
All macros and function declarations for manipulating internal and user visible
buffers appear in this file.

‘insdel.h’
This header provides the information required for performing text insertion and
deletion.

‘frame.h’ Provides the required structure, macro and function definitions for manipulat-
ing XEmacs frames.

2.2 Required Functions

Every module requires several initialization functions. It is the responsibility of these
functions to load in any dependent modules, and to declare all variables and functions
which are to be made visible to the XEmacs Lisp reader. Each of these functions performs
a very specific task, and they are executed in the correct order by XEmacs. All of these

4 Extending Emacs using C Modules

functions are void functions which take no arguments. Here, briefly, are the required module
functions. Note that the actual function names do not end with the string _module, but
rather they end with the abbreviated module name by which the module is known. More
on the module name and its importance later. Just bear in mind that the text _module in
the functions below is simply a place-holder, not an actual function name.

syms_of_module
This required function is responsible for introducing to the Lisp reader all func-
tions that you have defined in your module using DEFUN(). Note that only
functions are declared here, using the DEFSUBR() macro. No variables are de-
clared.

vars_of_module

This required function contains calls to macros such as DEFVAR_LISP(),
DEFVAR_BOOL () etc, and its purpose is to declare and initialize all and any
variables that your module defines. They syntax for declaring variables is
identical to the syntax used for all internal XEmacs source code. If the
module is intended to be usable statically linked into XEmacs, the actions of
this function are severely restricted. See section “General Coding Rules” in
XEmacs Internals Manual. Also see the comments in ‘src/emacs.c’ (main_1).
Modules which perform initializations not permitted by these rules will
probably work, but dual-use (dynamic loading and static linking) modules will
require very careful, and possibly fragile, coding.

modules_of_module
This optional function should be used to load in any modules which your module
depends on. The XEmacs module loading code makes sure that the same
module is not loaded twice, so several modules can safely call the module load
function for the same module. Ounly one copy of each module (at a given version)
will ever be loaded.

docs_of_module
This is a required function, but not one which you need ever write. This
function is created automatically by el1lcc when the module initialization code
is produced. It is required to document all functions and variables declared in
your module.

2.3 Required Variables

Not only does a module need to declare the initialization functions mentioned above, it
is also required to provide certain variables which the module loading code searches for in
order to determine the viability of a module. You are not required to provide these variables
in your source files. They are automatically set up in the module initialization file by the
ellcc compiler. These variables are discussed here simply for the sake of completeness.

emodules_compiler
This is a variable of type long, and is used to indicate the version of the XEmacs
loading technology that was used to produce the module being loaded. This
version number is completely unrelated to the XEmacs version number, as a

Chapter 2: Anatomy of a Module 5

given module may quite well work regardless of the version of XEmacs that was
installed at the time the module was created.

The XEmacs modules version is used to differentiate between major changes in
the module loading technology, not versions of XEmacs.

emodules_name

This is a short (typically 10 characters or less) name for the module, and it
is used as a suffix for all of the required functions. This is also the name by
which the module is recognized when loading dependent modules. The name
does not necessarily have to be the same as the physical file name, although
keeping the two names in sync is a pretty good idea. The name must not be
empty, and it must be a valid part of a C function name. The value of this
variable is appended to the function names syms_of_, vars_of _, modules_of _
and docs_of _ to form the actual function names that the module loading code
looks for when loading a module.

This variable is set by the --mod-name argument to ellcc.

emodules_version
This string variable is used to load specific versions of a module. Rarely will
two or more versions of a module be left lying around, but just in case this does
happen, this variable can be used to control exactly which module should be
loaded. See the Lisp function load-module for more details. This variable is
set by the --mod-version argument to ellcc.

emodules_title
This is a string which describes the module, and can contain spaces or other
special characters. It is used solely for descriptive purposes, and does not affect
the loading of the module. The value is set by the --mod-title argument to
ellcc.

2.4 Loading other Modules

During the loading of a module, it is the responsibility of the function modules_of_
module to load in any modules which the current module depends on. If the module is
stand-alone, and does not depend on other modules, then this function can be left empty
or even undeclared. However, if it does have dependencies, it must call emodules_load:

int emodules_load (const char *module,
const char *modname,
const char *modver)

The first argument module is the name of the actual shared object or DLL. You can omit
the ‘.so0’, “.ell’ or ‘.d11’ extension of you wish. If you do not specify an absolute path
name, then the same rules as apply to loading Lisp modules are applied when searching for
the module. If the module cannot be found in any of the standard places, and an absolute
path name was not specified, emodules_load will signal an error and loading of the module
will stop.

6 Extending Emacs using C Modules

The second argument (modname) is the module name to load, and must match the
contents of the variable emodulename in the module to be loaded. A mis-match will cause
the module load to fail. If this parameter is NULL or empty, then no checks are performed
against the target module’s emodule name variable.

The last argument, modver, is the desired version of the module to load, and is compared
to the target module’s emoduleversion value. If this parameter is not NULL or empty, and
the match fails, then the load of the module will fail.

emodules_load can be called recursively. If, at any point during the loading of modules a
failure is encountered, then all modules that were loaded since the top level call to emodules_
load will be unloaded. This means that if any child modules fail to load, then their parents
will also fail to load. This does not include previous successful calls to emodules_load at
the top level.

Warning: Modules are not loaded with the RTLD_GLOBAL flag. The practical upshot is
that individual modules do not have access to each other’s C symbols. One module cannot
make a C function call to a function defined in another module, nor can it read or set a
C variable in another module. All interaction between modules must, therefore, take place
at the Lisp level. This is by design. Other projects have attempted to use RTLD_GLOBAL,
only to find that spurious symbol name clashes were the result. Helper functions often
have simple names, increasing the probability of such a clash. If you really need to share
symbols between modules, create a shared library containing those symbols, and link your
modules with that library. Otherwise, interactions between modules must take place via
Lisp function calls and Lisp variables accesses.

Chapter 3: Using ellcc 7

3 Using ellcc

Before discussing the anatomy of a module in greater detail, you should be aware of
the steps required in order to correctly compile and link a module for use within XEmacs.
There is little difference between compiling normal C code and compiling a module. In fact,
all that changes is the command used to compile the module, and a few extra arguments
to the compiler.

XEmacs now ships with a new user utility, called ellcc. This is the Emacs Loadable
Library C Compiler . This is a wrapper program that will invoke the real C compiler with the
correct arguments to compile and link your module. With the exception of a few command
line options, this program can be considered a replacement for your C compiler. It accepts
all of the same flags and arguments that your C compiler does, so in many cases you can
simply set the make variable CC to ellcc and your code will be compiled as an Emacs
module rather than a static C object.

ellcc has three distinct modes of operation. It can be run in compile, link or initial-
ization mode. These modes are discussed in more detail below. If you want ellcc to show
the commands it is executing, you can specify the option --mode=verbose to ellcc. Spec-
ifying this option twice will enable certain extra debugging messages to be displayed on the
standard output.

3.1 Compile Mode

By default, ellcc is in compile mode. This means that it assumes that all of the
command line arguments are C compiler arguments, and that you want to compile the
specified source file or files. You can force compile mode by specifying the —~-mode=compile
argument to ellcc.

In this mode, ellcc is simply a front-end to the same C compiler that was used to create
the XEmacs binary itself. All ellcc does in this mode is insert a few extra command line
arguments before the arguments you specify to ellcc itself. ellcc will then invoke the C
compiler to compile your module, and will return the same exit codes and messages that
your C compiler does.

By far the easiest way to compile modules is to construct a ‘Makefile’ as you would for
a normal program, and simply insert, at some appropriate place something similar to:

CC=ellcc --mode=compile

.Cc.0:
$(CC) $(CFLAGS) -c $<

After this, all you need to do is provide simple make rules for compiling your module
source files. Since modules are most useful when they are small and self-contained, most
modules will have a single source file, aside from the module specific initialization file (see
below for details).

8 Extending Emacs using C Modules

3.2 Initialization Mode

XEmacs uses a rather bizarre way of documenting variables and functions. Rather than
have the documentation for compiled functions and variables passed as static strings in the
source code, the documentation is included as a C comment. A special program, called
‘make-docfile’, is used to scan the source code files and extract the documentation from
these comments, producing the XEmacs ‘DOC’ file, which the internal help engine scans
when the documentation for a function or variable is requested.

Due to the internal construction of Lisp objects, subrs and other such things, adding
documentation for a compiled function or variable in a compiled module, at any time after
XEmacs has been dumped is somewhat problematic. Fortunately, as a module writer you
are insulated from the difficulties thanks to your friend ellcc and some internal trickery in
the module loading code. This is all done using the initialization mode of ellcc.

The result of running ellcc in initialization mode is a C source file which you compile
with (you guessed it) ellcc in compile mode. Initialization mode is where you set the
module name, version, title and gather together all of the documentation strings for the
functions and variables in your module. There are several options that you are required to
pass ellcc in initialization mode, the first of which is the mode switch itself, ——-mode=init.

Next, you need to specify the name of the C source code file that ellcc will produce, and
you specify this using the —-mod-output=FILENAME argument. FILENAME is the name of
the C source code file that will contain the module variables and docs_of _module function.

As discussed previously, each module requires a short handle or module name. This is
specified with the ——mod-name=NAME option, where NAME is the abbreviated module name.
This NAME must consist only of characters that are valid in C function and variable names.

The module version is specified using --mod-version=VERSION argument, with VER-
SION being any arbitrary version string. This version can be passed as an optional second
argument to the Lisp function load-module, and as the third argument to the internal mod-
ule loading command emodules_load. This version string is used to distinguish between
different versions of the same module, and to ensure that the module is loaded at a specific
version.

Last, but not least, is the module title. Specified using the --mod-title=TITLE option,
the specified TITLE is used when the list of loaded modules is displayed. The module title
serves no purpose other than to inform the user of the function of the module. This string
should be brief, as it has to be formatted to fit the screen.

Following all of these parameters, you need to provide the list of all source code modules
that make up your module. These are the files which are scanned by ‘make-docfile’, and
provide the information required to populate the docs_of_module function. Below is a
sample ‘Makefile’ fragment which indicates how all of this is used.

Chapter 3: Using ellcc 9

CC=ellcc --mode=compile
LD=ellcc —--mode=link
MODINIT=ellcc --mode=init
CFLAGS=-02 -DSOME_STUFF

.c.o:
$(CC) $(CFLAGS) -c $<

MODNAME=sample
MODVER=1.0.0
MODTITLE="Small sample module"

SRCS=modfilel.c modfile2.c modfile3.c
0BJS=$(SRCS:.c=.0)

all: sample.ell
clean:
rm -f $(0BJS) sample_init.o sample.ell

install: all
mkdir ‘ellcc --mod-location‘/mymods > /dev/null
cp sample.ell ‘ellcc --mod-location‘/mymods/sample.ell

sample.ell: $(0BJS) sample_init.o
$(LD) --mod-output=$ $(0BJS) sample_init.o

sample_init.o: sample_init.c

sample_init.c: $(SRCS)
$ (MODINIT) --mod-name=$(MODNAME) --mod-version=$(MODVER) \
--mod-title=$(MODTITLE) --mod-output=$ $(SRCS)

The above ‘Makefile’ is, in fact, complete, and would compile the sample module,
and optionally install it. The --mod-location argument to ellcc will produce, on the
standard output, the base location of the XEmacs module directory. Each sub-directory
of that directory is automatically searched for modules when they are loaded with load-
module. An alternative location would be ‘/usr/local/lib/xemacs/site-modules’. That
path can change depending on the options the person who compiled XEmacs chose, so you
can always determine the correct site location using the —~—mod-site-location option. This
directory is treated the same way as the main module directory. Each sub-directory within
it is searched for a given module when the user attempts to load it. The valid extensions
that the loader attempts to use are ‘.so’, ‘.ell’ and ‘.d11l’. You can use any of these
extensions, although ‘.el1’ is the preferred extension.

3.3 Link Mode

Once all of your source code files have been compiled (including the generated init file)
you need to link them all together to create the loadable module. To do this, you invoke
ellcc in link mode, by passing the --mode=1ink option. You need to specify the final
output file using the —-mod-output=NAME option, but other than that all other arguments

10 Extending Emacs using C Modules

are passed on directly to the system compiler or linker, along with any other required
arguments to create the loadable module.

The module has complete access to all symbols that were present in the dumped XEmacs,
so you do not need to link against libraries that were linked in with the main executable.
If your library uses some other extra libraries, you will need to link with those. There is
nothing particularly complicated about link mode. All you need to do is make sure you
invoke it correctly in the ‘Makefile’. See the sample ‘Makefile’ above for an example of a
well constructed ‘Makefile’ that invoked the linker correctly.

3.4 Other ellcc options

Aside from the three main ellcc modes described above, ellcc can accept several other
options. These are typically used in a ‘Makefile’ to determine installation paths. ellcc also
allows you to over-ride several of its built-in compiler and linker options using environment
variables. Here is the complete list of options that ellcc accepts.

--mode=compile
Enables compilation mode. Use this to compile source modules.

--mode=link
Enabled link edit mode. Use this to create the final module.

--mode=init
Used to create the documentation function and to initialize other required vari-
ables. Produces a C source file that must be compiled with ellcc in compile
mode before linking the final module.

--mode=verbose
Enables verbose mode. This will show you the commands that are being exe-
cuted, as well as the version number of ellcc. If you specify this option twice,
then some extra debugging information is displayed.

--mod-name=NAME
Sets the short internal module NAME to the string specified, which must consist
only of valid C identifiers. Required during initialization mode.

--mod-version=VERSION
Sets the internal module VERSION to the specified string. Required during
initialization mode.

--mod-title=TITLE
Sets the module descriptive TITLE to the string specified. This string can
contain any printable characters, but should not be too long. It is required
during initialization mode.

--mod-output=FILENAME
Used to control the output file name. This is used during initialization mode
to set the name of the C source file that will be created to FILENAME . During
link mode, it sets the name of the final loadable module to FILENAME .

Chapter 3: Using ellcc 11

--mod-location
This will print the name of the standard module installation path on the stan-
dard output and immediately exit ellcc. Use this option to determine the
directory prefix of where you should install your modules.

--mod-site-location
This will print the name of the site specific module location and exit.

--mod-archdir
Prints the name of the root of the architecture-dependent directory that
XEmacs searches for architecture-dependent files.

--mod-config
Prints the name of the configuration for which XEmacs and ellcc were com-
piled.

3.5 Environment Variables

During its normal operation, ellcc uses the compiler and linker flags that were deter-
mined at the time XEmacs was configured. In certain rare circumstances you may wish to
over-ride the flags passed to the compiler or linker, and you can do so using environment
variables. The table below lists all of the environment variables that ellcc recognizes.

ELLCC This is used to over-ride the name of the C compiler that is invoked by ellcc.
ELLLD Sets the name of the link editor to use to created the final module.
ELLCFLAGS

Sets the compiler flags passed on when compiling source modules. This only
sets the basic C compiler flags. There are certain hard-coded flags that will
always be passed.

ELLLDFLAGS
Sets the flags passed on to the linker. This does not include the flags for enabling
PIC mode. This just sets basic linker flags.

ELLDLLFLAGS
Sets the flags passed to the linker that are required to created shared and
loadable objects.

ELLPICFLAGS
Sets the C compiler option required to produce an object file that is suitable
for including in a shared library. This option should turn on PIC mode, or the
moral equivalent thereof on the target system.

ELLMAKEDOC
Sets the name of the ‘make-docfile’ program to use. Usually ellcc will use
the version that was compiled and installed with XEmacs, but this option allows
you to specify an alternative path. Used during the compile phase of XEmacs
itself.

12

Extending Emacs using C Modules

Chapter 4: Defining Functions 13

4 De ning Functions

One of the main reasons you would ever write a module is to provide one or more
functions for the user or the editor to use. The term function is a bit overloaded here, as it
refers to both a C function and the way it appears to Lisp, which is a subroutine, or simply
a subr. A Lisp subr is also known as a Lisp primitive, but that term applies less to dynamic
modules. See section “Writing Lisp Primitives” in XEmacs Internals Manual, for details on
how to declare functions. You should familiarize yourself with the instructions there. The
format of the function declaration is identical in modules.

Normal Lisp primitives document the functions they defining by including the documen-
tation as a C comment. During the build process, a program called ‘make-docfile’ is run,
which will extract all of these comments, build up a single large documentation file, and
will store pointers to the start of each documentation entry in the dumped XEmacs. This,
of course, will not work for dynamic modules, as they are loaded long after XEmacs has
been dumped. For this reason, we require a special means for adding documentation for
new subrs. This is what the macro CDOCSUBR is used for, and this is used extensively during
ellcc initialization mode.

When using DEFUN in normal XEmacs C code, the sixth “parameter” is a C comment
which documents the function. For a dynamic module, we of course need to convert the C
comment to a usable string, and we need to set the documentation pointer of the subr to
this string. As a module programmer, you don’t actually need to do any work for this to
happen. It is all taken care of in the docs_of _module function created by ellcc.

4.1 Using DEFUN

The full syntax of a function declaration is discussed in the XEmacs internals manual
in greater depth. section “Writing Lisp Primitives” in XEmacs Internals Manual. What
follows is a brief description of how to define and implement a new Lisp primitive in a
module. This is done using the DEFUN macro. Here is a small example:

DEFUN ("my-function", Fmy_function, 1, 1, "FFile name: ", /*
Sample Emacs primitive function.

The specified FILE is frobnicated before it is fnozzled.
*/

(file))
{

char *filename;

if (NILP(file))
return Qnil;

filename = (char *)XSTRING_DATA(file);
frob(filename) ;
return Qt;

14 Extending Emacs using C Modules

The first argument is the name of the function as it will appear to the Lisp reader. This
must be provided as a string. The second argument is the name of the actual C function
that will be created. This is typically the Lisp function name with a preceding capital F,
with hyphens converted to underscores. This must be a valid C function name. Next come
the minimum and maximum number of arguments, respectively. This is used to ensure
that the correct number of arguments are passed to the function. Next is the interactive
definition. If this function is meant to be run by a user interactively, then you need to
specify the argument types and prompts in this string. Please consult the XEmacs Lisp
manual for more details. Next comes a C comment that is the documentation for this
function. This comment must exist. Last comes the list of function argument names, if any.

4.2 Declaring Functions

Simply writing the code for a function is not enough to make it available to the Lisp
reader. You have to, during module initialization, let the Lisp reader know about the
new function. This is done by calling DEFSUBR with the name of the function. This is
the sole purpose of the initialization function syms_of_module. See Section 2.2 [Required
Functions|. page 3, for more details.

Each call to DEFSUBR takes as its only argument the name of the function, which is the

same as the second argument to the call to DEFUN. Using the example function above, you
would insert the following code in the syms_of_module function:

DEFSUBR (Fmy_function) ;

This call will instruct XEmacs to make the function visible to the Lisp reader and will
prepare for the insertion of the documentation into the right place. Once this is done, the
user can call the Lisp function my-function, if it was defined as an interactive function
(which in this case it was).

Thats all there is to defining and announcing new functions. The rules for what goes
inside the functions, and how to write good modules, is beyond the scope of this document.
Please consult the XEmacs internals manual for more details.

Chapter 5: Defining Variables 15

5 De ning Variables

Rarely will you write a module that only contains functions. It is common to also provide
variables which can be used to control the behavior of the function, or store the results of
the function being executed. The actual C variable types are the same for modules and
internal XEmacs primitives, and the declaration of the variables is identical.

See section “Adding Global Lisp Variables” in XEmacs Internals Manual, for more in-
formation on variables and naming conventions.

Once your variables are defined, you need to initialize them and make the Lisp reader
aware of them. This is done in the vars_of_module initialization function using special
XEmacs macros such as DEFVAR_LISP, DEFVAR_BOOL, DEFVAR_INT etc. The best way to see
how to use these macros is to look at existing source code, or read the internals manual.

One very important difference between XEmacs variables and module variables is how
you use pure space. Simply put, you never use pure space in XEmacs modules. The pure
space storage is of a limited size, and is initialized properly during the dumping of XEmacs.
Because variables are being added dynamically to an already running XEmacs when you
load a module, you cannot use pure space. Be warned: do not use pure space in modules.
Repeat, do not use pure space in modulesOnce again, to remove all doubts: DO NOT
USE PURE SPACE IN MODULES!!

Below is a small example which declares and initializes two variables. You will note
that this code takes into account the fact that this module may very well be compiled into
XEmacs itself. This is a prudent thing to do.

Lisp_0Object Vsample_string;
int sample_boolean;

void
vars_of_module()

{
DEFVAR_LISP ("sample-string", &Vsample_string /*
This is a sample string, declared in a module.

Nothing magical about it.
*/);

DEFVAR_BOOL ("sample-boolean", &sample_boolean /*
*Sample user-settable boolean.

x/);

sample_boolean = 0;
Vsample_string = build_string("My string");

}

16

Extending Emacs using C Modules

Table of Contents

1 Introduction............................... 1
2 Anatomy of a Module...................... 3
2.1 Required Header File.............. 3
2.2 Required Functions........... i 3
2.3 Required Variables 4
2.4 Loading other Modules 5
3 Usingellcc, 7
3.1 Compile Mode 7
3.2 Initialization Mode 8
3.3 Link Mode. 9
3.4 Other ellcc options.oouiiii 10
3.5 Environment Variables............. 11
4 Defining Functions........................ 13
4.1 USing DEFUNottt e e e 13
4.2 Declaring Functions 14

5 Defining Variables........................ 15

il

Extending Emacs using C Modules

Index

Index

A

ANALOMY ..o 3
C

COMPIlEr L. 1
compiling ... 7
CoNg.h .o 3
D

dening functions e 13
deningobjects ... 15
dening variablesol 15
DEFSUBR. ..ot 14
DEFUN ... e 13
DEFVAR BOOL.......c.coviiiiiiiiens 15
DEFVAR INT ..o 15
DEFVAR LISP ... 15
dependencies. ... 5
DLL ot 1
docs_ of module.................. ...l 4
documentation i 2,8
DSO . i 1
E

ellce 1,7
ELLCC. .t 11
ELLCFLAGS. 11
ELLDLLFLAGS.o 11
ELLLD ..ot e 11
ELLLDFLAGS. ... e 11
ELLMAKEDOC. 11
ELLPICFLAGS ... 11
Emacs Modules. ... 1
emodules.h........... 3
emodules_load ... 5
environment variables 11
F

format, moduleol 3
functions, declaring 14
functions, deningl 13
functions, LiSp ..o 13

functions, required 3

17

H

header les............coiiiiiiiiiii .. 1
help ... 2
I

include les ... 3
initialization 3, 4,8
L

INKer ... 1
NKING ..o 9
M

module compiler.............ooii 7
module format 3
module skeleton.................. oo 3
modules_of module......................... 4,5
O

objects,deningoii 15
objects, LiSp ... 15
P

paths ... 10
R

required functions.........l 3
required header..................o 3
required variables..............o 4
S

samples. ... 1
shared object. ... 1
skeleton, module............... ...l 3
SUDIS .o 13
syms_of module................... ...l 4
\V

variables, dening oo 15
variables, LiSp ... 15
variables, required ol 4
vars_ of module 4

18

Extending Emacs using C Modules

	Introduction
	Anatomy of a Module
	Required Header File
	Required Functions
	Required Variables
	Loading other Modules

	Using ellcc
	Compile Mode
	Initialization Mode
	Link Mode
	Other ellcc options
	Environment Variables

	Defining Functions
	Using DEFUN
	Declaring Functions

	Defining Variables

