
The Customization Library 1

The Customization Library

This manual describes how to declare customization groups, variables, and faces. It doesn't
contain any examples, but please look at the �le `cus-edit.el' which contains many declarations
you can learn from.

All the customization declarations can be changes by keyword arguments. Groups, variables,
and faces all share these common keywords:

:group value should be a customization group. Add symbol to that group.

:link value should be a widget type. Add value to the external links for this customization
option. Useful widget types include custom-manual, info-link, and url-link.

:load Add value to the �les that should be loaded before displaying this customization
option. The value should be either a string, which should be a string which will be
loaded with load-library unless present in load-history, or a symbol which will
be loaded with require.

:tag Value should be a short string used for identifying the option in customization menus
and bu�ers. By default the tag will be automatically created from the options name.

Declaring Groups

Use defgroup to declare new customization groups.

Functiondefgroup symbol members doc[keyword value]...
Declare symbol as a customization group containing members. symbol does not need to
be quoted.
doc is the group documentation.
members should be an alist of the form ((name widget)...) where name is a symbol and
widget is a widget for editing that symbol. Useful widgets are custom-variable for
editing variables, custom-face for editing faces, and custom-group for editing groups.
Internally, custom uses the symbol property custom-group to keep track of the group
members, and group-documentation for the documentation string.
The following additional keyword's are de�ned:

:prefix value should be a string. If the string is a pre�x for the name of a member of
the group, that pre�x will be ignored when creating a tag for that member.

Declaring Variables

Use defcustom to declare user editable variables.

Functiondefcustom symbol value doc[keyword value]...
Declare symbol as a customizable variable that defaults to value. Neither symbol nor
value needs to be quoted. If symbol is not already bound, initialize it to value.
doc is the variable documentation.
The following additional keyword's are de�ned:

:type value should be a widget type.

:options value should be a list of possible members of the speci�ed type. For hooks,
this is a list of function names.

2 The Customization Library

:initialize
value should be a function used to initialize the variable. It takes two argu-
ments, the symbol and value given in the defcustom call. Some prede�ned
functions are:

custom-initialize-set
Use the :set method to initialize the variable. Do not initialize
it if already bound. This is the default :initialize method.

custom-initialize-default
Always use set-default to initialize the variable, even if a :set
method has been speci�ed.

custom-initialize-reset
If the variable is already bound, reset it by calling the :set
method with the value returned by the :get method.

custom-initialize-changed
Like custom-initialize-reset, but use set-default to initial-
ize the variable if it is not bound and has not been set already.

:set value should be a function to set the value of the symbol. It takes two argu-
ments, the symbol to set and the value to give it. The default is set-default.

:get value should be a function to extract the value of symbol. The function takes
one argument, a symbol, and should return the current value for that symbol.
The default is default-value.

:require value should be a feature symbol. Each feature will be required when the
`defcustom' is evaluated, or when Emacs is started if the user has saved this
option.

See section \Sexp Types" in The Widget Library , for information about widgets to use
together with the :type keyword.

Internally, custom uses the symbol property custom-type to keep track of the variables type,
standard-value for the program speci�ed default value, saved-value for a value saved by the
user, and variable-documentation for the documentation string.

Use custom-add-option to specify that a speci�c function is useful as an member of a hook.

Functioncustom-add-option symbol option
To the variable symbol add option.
If symbol is a hook variable, option should be a hook member. For other types variables,
the e�ect is unde�ned."

Declaring Faces

Faces are declared with defface.

Functionde�ace face spec doc[keyword value]...
Declare faceas a customizable face that defaults to spec. facedoes not need to be quoted.
If face has been set with `custom-set-face', set the face attributes as speci�ed by that
function, otherwise set the face attributes according to spec.
doc is the face documentation.
spec should be an alist of the form `((display atts)...)'.

The Customization Library 3

atts is a list of face attributes and their values. The possible attributes are de�ned in the
variable `custom-face-attributes'.
The atts of the �rst entry in specwhere the display matches the frame should take e�ect
in that frame. display can either be the symbol `t', which will match all frames, or an
alist of the form `((req item...)...)'
For the display to match a FRAME, the req property of the frame must match one of the
item. The following req are de�ned:

type (the value of (window-system))
Should be one of x or tty.

class (the frame's color support)
Should be one of color, grayscale, or mono.

background
(what color is used for the background text)
Should be one of light or dark.

Internally, custom uses the symbol property face-defface-spec for the program spec-
i�ed default face properties, saved-face for properties saved by the user, and face-
documentation for the documentation string.

Usage for Package Authors

The recommended usage for the author of a typical emacs lisp package is to create one
group identifying the package, and make all user options and faces members of that group. If
the package has more than around 20 such options, they should be divided into a number of
subgroups, with each subgroup being member of the top level group.

The top level group for the package should itself be member of one or more of the standard
customization groups. There exists a group for each �nder keyword. Press C-h p to see a list of
�nder keywords, and add you group to each of them, using the :group keyword.

Utilities

These utilities can come in handy when adding customization support.

Widgetcustom-manual
Widget type for specifying the info manual entry for a customization option. It takes one
argument, an info address.

Functioncustom-add-to-group group member widget
To existing group add a new member of type widget, If there already is an entry for that
member, overwrite it.

Functioncustom-add-link symbol widget
To the custom option symbol add the link widget.

Functioncustom-add-load symbol load
To the custom option symbol add the dependency load. load should be either a library
�le name, or a feature name.

Functioncustomize-menu-create symbol &optional name
Create menu for customization group symbol. If optional name is given, use that as the
name of the menu. Otherwise the menu will be named `Customize'. The menu is in a
format applicable to easy-menu-define.

4 The Customization Library

The Init File

Customizations are saved to the �le speci�ed by custom-file, as calls to custom-set-
variables and custom-set-faces.

When you save customizations, the current implementation removes the calls to custom-
set-variables and custom-set-faces, and replaces them with code generated on the basis of
the current customization state in Emacs.

By default custom-file is your `.emacs' �le (for GNU Emacs and older XEmacs) and is
`custom.el' in the same directory as `init.el' (in XEmacs 21.4 and later). If you use another
�le, you must explicitly load it yourself.

As of XEmacs 21.4.7, when custom-file is present, it is loaded after `init.el'. This is
likely to change in the future, because (1) actions in `init.el' often would like to depend on
customizations for consistent appearance and (2) Custom is quite brutal about enforcing its idea
of the correct values at initialization.

Wishlist

� Better support for keyboard operations in the customize bu�er.
� Integrate with `w3' so you can get customization bu�ers with much better formatting. I'm

thinking about adding a <custom>name</custom> tag. The latest w3 have some support
for this, so come up with a convincing example.

� Add an `examples' section, with explained examples of custom type de�nitions.
� Support selectable color themes. I.e., change many faces by setting one variable.
� Support undo using lmi's `gnus-undo.el'.
� Make it possible to append to `choice', `radio', and `set' options.
� Ask whether set or modi�ed variables should be saved in kill-buffer-hook.

Ditto for kill-emacs-query-functions.
� Command to check if there are any customization options that does not belong to an existing

group.
� Optionally disable the point-cursor and instead highlight the selected item in XEmacs.

This is like the *Completions* bu�er in XEmacs. Suggested by Jens Lautenbacher
`<jens@lemming0.lem.uni-karlsruhe.de>'.

� Explain why it is necessary that all choices have di�erent default values.
� Add some direct support for meta variables, i.e. make it possible to specify that this variable

should be reset when that variable is changed.
� Add tutorial.
� Describe the :type syntax in this manual.
� Find a place is this manual for the following text:

Radio vs. Buttons
Use a radio if you can't �nd a good way to describe the item in the choice menu text. I.e.
it is better to use a radio if you expect the user would otherwise manually select each item
from the choice menu in turn to see what it expands too.
Avoid radios if some of the items expands to complex structures.
I mostly use radios when most of the items are of type function-item or variable-item.

� Update customize bu�ers when custom-set-variable or custom-save-customized is
called.

� Better handling of saved but uninitialized items.
� Detect when faces have been changed outside customize.

The Customization Library 5

� Enable mouse help in Emacs by default.
� Add an easy way to display the standard settings when an item is modi�ed.
� See if it is feasible to scan �les for customization information instead of loading them,
� Add hint message when user push a non-pushable tag.

Suggest that the user unhide if hidden, and edit the value directly otherwise.
� Use checkboxes and radio buttons in the state menus.
� Add option to hide `[hide]' for short options. Default, on.
� Add option to hide `[state]' for options with their standard settings.
� There should be a way to specify site defaults for user options.
� There should be more bu�er styles. The default `nested style, the old `outline' style, a

`numeric' style with numbers instead of stars, an `empty' style with just the group name,
and `compact' with only one line per item.

� Newline and tab should be displayed as `^J' and `^I' in the regexp and file widgets. I
think this can be done in XEmacs by adding a display table to the face.

� Use glyphs to draw the customize-browse tree.
Add echo and balloon help. You should be able to read the documentation simply by
moving the mouse pointer above the name.
Add parent links.
Add colors.

6 The Customization Library

i

Table of Contents

The Customization Library . 1
Declaring Groups . 1
Declaring Variables . 1
Declaring Faces . 2
Usage for Package Authors . 3
Utilities . 3
The Init File . 4
Wishlist . 4

ii The Customization Library

	The Customization Library
	Declaring Groups
	Declaring Variables
	Declaring Faces
	Usage for Package Authors
	Utilities
	The Init File
	Wishlist

