
Kawa, the Java-based Scheme system
19 November 2003

Per Bothner

Chapter 1: Features 1

Kawa is a Scheme environment, written in Java, and that compiles Scheme code into
Java byte-codes.

This documents version 1.7.90, updated 19 November 2003.

See the summary of recent changes (http://www.gnu.org/software/kawa/NEWS).

The author of Kawa is Per Bothner (http://www.bothner.com/per/) per@bothner.com.
Kawa is a re-write of Kawa 0.2, which was written by R. Alexander Milowski alex@milowski.com.

The Kawa home page (which is currently just an on-line version of this document) is
http://www.gnu.org/software/kawa/.

The Scheme repository (http://www.cs.indiana.edu/scheme-repository/home.html)
has various useful information on Scheme. but it is not very actively updated. A new repos-
itory has been started at www.schemers.org (http://www.schemers.org/). It includes
pointer to an online copy of R5RS (http://www.schemers.org/Documents/Standards/).

A nice quick introduction to Scheme can be found in Greg Badros’s lecture notes
(http://www.cs.washington.edu/education/courses/341/99su/lectures/scheme/).
A more in-depth tutorial which also discusses Scheme implementation is Paul Wilson’s "An
Introduction to Scheme and its Implementation" (http://www.cs.utexas.edu/users/wilson/schintro/schintro_
toc.html).

Javadoc generated documentation of the Kawa classes (http://www.gnu.org/software/kawa/api/)
is also available. The packages gnu.bytecode (http://www.gnu.org/software/kawa/api/gnu/bytecode/package-summary.html),
gnu.math (http://www.gnu.org/software/kawa/api/gnu/math/package-summary.html),
gnu.lists (http://www.gnu.org/software/kawa/api/gnu/lists/package-summary.html),
gnu.xml (http://www.gnu.org/software/kawa/api/gnu/xml/package-summary.html),
gnu.expr (http://www.gnu.org/software/kawa/api/gnu/expr/package-summary.html),
gnu.mapping (http://www.gnu.org/software/kawa/api/gnu/mapping/package-summary.html),
and gnu.text (http://www.gnu.org/software/kawa/api/gnu/text/package-summary.html),
are used by Kawa, and distributed with it, but may be independently useful.

For a technical overview of Kawa, see these http://www.gnu.org/software/kawa/internals.html.

For copyright information on the software and documentation, see Chapter 17 [License],
page 78.

Kawa is partly sponsored by Brainfood (http://www.brainfood.com/).

This package has nothing to do with the Kawa commercial Java IDE (http://www.macromedia.com/software/kawa/).

1 Features

Kawa is a full Scheme implementation. It implements almost all of R5RS (for exceptions
see Chapter 5 [Restrictions], page 12), plus some extensions. By default, symbols are case
sensitive.

It is completely written in Java. Scheme functions and files are automatically com-
piled into Java byte-codes. Kawa does some optimizations, and the compiled code runs at
reasonable speed.

Kawa uses Unicode internally, and uses the Java facilities to convert files using other
character encodings.

Chapter 2: Getting Kawa 2

Kawa provides the usual read-eval-print loop, as well as batch modes.
Kawa provides a framework for implementing other progressing languages, and comes

with incomplete support for CommonLisp, Emacs Lisp, and EcmaScript, and the draft
XML Query language (http://www.gnu.org/software/qexo/).

Kawa is written in an object-oriented style.
Kawa has builtin pretty-printer support, and fancy formatting.
Kawa supports class-definition facilities, and separately-compiled modules.
Kawa implements the full numeric tower, including infinite-precision rational numbers

and complex numbers. It also supports "quantities" with units, such as 3cm.
You can optionally declare the types of variables.
You can conveniently access Java objects, methods, fields, and classes.
Kawa implements most of the features of the expression language of DSSSL, the Scheme-

derived ISO-standard Document Style Semantics and Specification Language for SGML. Of
the core expression language, the only features missing are character properties, external-
procedure, the time-relationed procedures, and character name escapes in string literals.
Also, Kawa is not generally tail-recursive. From the full expression language, Kawa addition-
ally is missing format-number, format-number-list, and language objects. Quantities,
keyword values, and the expanded lambda form (with optional and keyword parameters)
are supported.

Kawa implements the following semi-standard SRFIs (Scheme Request for Implementa-
tion (http://srfi.schemers.org/)):

SRFI 0: Feature-based conditional expansion construct, using cond-expand - see Sec-
tion 7.1 [Syntax and conditional compilation], page 17.
SRFI 1: List Library (http://srfi.schemers.org/srfi-1/srfi-1.html), if (require
’list-lib).
SRFI 4: Homogeneous numeric vector datatypes - see Section 7.11 [Uniform vectors],
page 30..
SRFI 6: Basic String Ports - see Section 8.2 [Ports], page 41.
SRFI 8: receive: Binding to multiple values - see Section 7.2 [Multiple values], page 18.
SRFI 9: Defining Record Types, using define-record-type - see 〈undefined〉 [Record
types], page 〈undefined〉.
SRFI 11: Syntax for receiving multiple values, using let-values and let*-value -
see Section 7.2 [Multiple values], page 18.
SRFI 17: Generalized set! - see Section 7.13 [Locations], page 34.
SRFI 23: Error reporting mechanism, using error - see Section 7.12 [Exceptions],
page 33.
SRFI 25: Multi-dimensional Array Primitives - see Section 7.10 [Arrays], page 27.
SRFI 26: Notation for Specializing Parameters without Currying - see Section 7.5
[Procedures], page 21.
SRFI 28: Basic Format Strings - see Section 8.3 [Format], page 44.
SRFI 30: Nested Multi-line Comments.

Chapter 3: Building and installing Kawa 3

2 Getting Kawa

You can get Kawa sources and binaries from the Kawa ftp site ftp://ftp.gnu.org/pub/gnu/kawa/,
or from a mirror site (http://www.gnu.org/order/ftp.html).

The latest release of the Kawa source code is ftp://ftp.gnu.org/pub/gnu/kawa/kawa-1.7.90.tar.gz.
The same sources are available as a zip file ftp://ftp.gnu.org/pub/gnu/kawa/kawa-1.7.90-src.zip.

A ready-to-run .jar archive of the pre-compiled classes is in ftp://ftp.gnu.org/pub/gnu/kawa/kawa-1.7.90.jar.

You can also check out the very latest version via anonymous cvs.
cvs -d :pserver:anoncvs@sources.redhat.com:/cvs/kawa login

(password is ‘‘anoncvs’’)
cvs -d :pserver:anoncvs@sources.redhat.com:/cvs/kawa co kawa

Once you have it checked out, you can update it with cvs update.

You can also view the cvs archive (http://sources.redhat.com/cgi-bin/cvsweb.cgi/kawa/?cvsroot=kawa)
via cvsweb.

3 Building and installing Kawa

Before installing Kawa, you must have Java working on your system.

You can compile Kawa from the source distribution. Alternatively, you can install the
pre-compiled binary distribution.

3.1 Getting and running Java

You will need a working Java system. Kawa has been reported to work with JDK from
1.1 through 1.4.x, Kaffe, Symantec Cafe, J++, and GCJ.

The discussion below assumes you are using the Java Developer’s Kit (JDK) from Java-
Soft (Sun). You can download free copies of JDK 1.4 (http://java.sun.com/j2se/1.4/)
for various platforms.

If you want to run Kawa on a Macintosh, see http://home.earthlink.net/%7Eathene/scheme/mackawa.html.

The program java is the Java interpreter. The program javac is the Java compiler, and
is needed if you want to compile the source release yourself. Both programs must be in your
PATH. If you have the JDK in directory $JDK, and you are using a Bourne-shell compatible
shell (/bin/sh, ksh, bash, and some others) you can set PATH thus:

PATH=$JDK/bin:$PATH
export PATH

3.2 Installing and using the binary distribution

The binary release includes only the binary compiled ‘.class’ versions of the same
‘.java’ source files in the source release. It does not include any documentation, so you
probably want the source release in addition to the binary release. The purpose of the
binary release is just to save you time and trouble of compiling the sources.

Chapter 3: Building and installing Kawa 4

The binary release depends on certain "Java 2" features, such as collections. If you
have an older Java implementation (including JDK 1.1.x) you will need to get the source
distribution.

The binary release comes as a .jar archive ‘kawa-1.7.90.jar’.

You can unzip the archive, or you can use it as is. Assuming the latter, copy the archive
to some suitable location, such as /usr/local/lib/kawa.jar.

Then, before you can actually run Kawa, you need to set CLASSPATH so it includes the
Kawa archive. On Unix, using a Bourne-style shell:

CLASSPATH=/usr/local/lib/kawa.jar
export CLASSPATH

On Windows you need to set classpath in a DOS console. For example:
set classpath=\kawa\kawa-1.7.90.jar

Then to run Kawa do:
java kawa.repl

To run Kawa in a fresh window, you can do:
java kawa.repl -w

3.3 Installing and using the source distribution

The Kawa release normally comes as a gzip-compressed tar file named ‘kawa-1.7.90.tar.gz’.
The same sources are available as a zip file ‘kawa-1.7.90-src.zip’. Two methods are sup-
porting for compiling the Kawa sources; choose whichever is most convenient for you.

One method uses the traditional GNU configure script, followed by running make. This
works well on Unix-like systems, such as GNU/Linux. It does not work well under Microsoft
Windows. (Even when using the CygWin Unix-emulation package there are some problems
with file paths.)

The other method uses the ant command, a Java-based build system released by
Apache’s Jakarta project. This uses an build.xml file in place of Makefiles, and works on
non-Unix systems such as Microsoft Windows. However, the ant method does not support
all the features of the configure+make method.

3.3.1 Build Kawa using configure and make

In your build directory do:
tar xzf kawa-1.7.90.tar.gz
cd kawa-1.7.90

Then you must configure the sources. This you can do the same way you configure most
other GNU software. Normally you can just run the configure script with no arguments:

./configure

This will specify that a later make install will install the compiled ‘.class’ files
into /usr/local/share/java. If you want them to be installed someplace else, such as
$PREFIX/share/java, then specify that when you run configure:

Chapter 3: Building and installing Kawa 5

./configure --prefix $PREFIX

If you have the GNU ‘readline’ library installed, you might try adding the ‘--enable-kawa-frontend’
flag. This will build the ‘kawa’ front-end program, which provides input-line editing and
an input history. You can get ‘readline’ from archives of GNU programs, including
ftp://www.gnu.org/.

If you have Swing installed, and want to use JEmacs (Emacs in Java), also pass the
--with-swing flag to configure.

If you have installed Kawa before, make sure your CLASSPATH does not include old
versions of Kawa, or other classes that may conflict with the new ones.

If you use a very old or bare-bones Java implementation that not have certain "Java
2" features (such as java.util.List, java.lang.ref, or ThreadLocal) then you need to
convert the Kawa source-code so it doesn’t depend on those features. You do this with the
following command:

make select-java1

Most people should not need to do this. (You don’t need to if you’re using GCJ, even
though it doesn’t implement all of Java 2.) (If you need to convert the code back to the
default, do: make select-java2.)

Then you need to compile all the .java source files. Just run make:
make

This assumes that ‘java’ and ‘javac’ are the java interpreter and compiler, respectively.
For example, if you are using the Kaffe Java interpreter, you need to instead say:

make JAVA=kaffe

You can now test the system by running Kawa in place:
java kawa.repl

or you can run the test suite:
make check

or you can install the compiled files:
make install

This will install your classes into $PREFIX/share/java (and its sub-directories). Here
$PREFIX is the directory you specified to configure with the --prefix option, or /usr/local
if you did not specify a --prefix option.

To use the installed files, you need to set CLASSPATH so that $PREFIX/share/java/kawa.jar
is in the path:

CLASSPATH=$PREFIX/share/java/kawa.jar
export CLASSPATH

This is done automatically if you use the ‘kawa’ script.

3.3.2 Build Kawa using ant

Kawa now includes an Ant buildfile (build.xml). Ant (http://jakarta.apache.org/ant/)
is a part of the Apache Jakarta project. If you don’t hava Ant installed, get it from
http://ant.apache.org/bindownload.cgi. The buildfile should work with Ant 1.3, and

Chapter 3: Building and installing Kawa 6

has been tested with 1.4.1. and 1.5.1. The build is entirely Java based and works equally
well on *nix, Windows, and presumably most any other operating system.

Once Ant has been installed and configured (you may need to set the JAVA_HOME, and
ANT_HOME environment variables), you should be able to change to the directory containing
the build.xml file, and invoke the ‘ant’ command. With the default settings, a successful
build will result in a kawa-1.7.90.jar in the current directory

There are a few Ant "targets" of interest (they can be supplied on the Ant command
line):

all This is the default, it does classes and jar.

classes Compiles all the files into *.class files into the directory specified by the
build.dir property.

jar Builds a jar into into the directory specified by the dist.dir property.

runw Run Kawa in a GUI window.

clean Deletes all files generated by the build, including the jar.

There is not yet a test target for running the testsuite.
The are various "properties" that control what ant does. You can override the on the

command line or by editing the build.properties file in the same directory as build.xml.
For example the build.dir directory tells ant where to build temporary files, and where to
leave the resulting .jar file. For example, to leave the generated files in the sub-directory
named BUILD do:

ant -Dbuild.dir=BUILD

A sample build.properties is provided and it contains comments explaining many of
the options.

Here are a few general properties that help to customize your build:

build.dir
Path to put the temporary files used for building.

dist.dir Path to put the resulting jar file.

version.local
A suffix to add to the version label for your customized version.

debug Whether (true/false) the Javac "-g" option is enabled.

optimize Whether (true/false) the Javac "-O" option is enabled.

Here are some Kawa-specific ones (all true/false): with-collections, with-references,
with-awt, with-swing, enable-jemacs, and enable-servlet> See the sample build.properties
for more information on these.

If you change any of the build properties, you will generally want to do an ‘ant clean’
before building again as the build is often not able to notice that kind of change. In the case
of changing a directory path, you would want to do the clean before changing the path.

A special note for NetBeans users: For some reason the build-tools target which compiles
an Ant task won’t compile with the classpath provided by NetBeans. You may do ‘ant

Chapter 3: Building and installing Kawa 7

build-tools’ from the command line outside of NetBeans, in which case you will not want
to use the clean target as that will delete the tool files as well. You can use the clean-
build and/or clean-dist targets as appropriate. Alternatively you can add ant.jar to
the build-tools classpath by copying or linking it into a lib/ext directory in Kawa’s
source directory (the one containing the build.xml file).

3.3.3 Using the Jikes compiler

Jikes (http://oss.software.ibm.com/developerworks/opensource/jikes/project/)
is a Java source-to-bytecode compiler that is much faster than Sun’s javac. (Note that this
only speeds up building Kawa from source, not actually running Kawa.) The instructions
for using jikes are as above, except that you need to specify Jikes at configure time,
setting the JAVAC environment variable. If jikes is in your execution path, do:

JAVAC=jikes ./configure

You also need to inform Jikes where it should find the standard Java classes (since Jikes
is a compiler only). For example:

CLASSPATH=.:/opt/jdk1.3/jre/lib/rt.jar
export CLASSPATH

3.3.4 Compiling Kawa to native code with GCJ

The GNU Compiler for the Java(tm) Programming Language (GCJ (http://gcc.gnu.org/java/))
is part of the GNU Compiler Collection (GCC (http://gcc.gnu.org/)). It can compile
Java source or bytecode files into native code on supported systems. Version 3.3 or later of
GCC is recommended, and only Intel x86-based Linux/GNU system have been tested with
Kawa.

First, get and install GCC 3.3. Set PREFIX to where you want to install GCJ, and
configure it with these options:

./configure --enable-threads --enable-languages=c++,java --prefix $PREFIX
make bootstrap
make install

Make sure gcj is in your path and refers to the newly-installed version, and if needed,
set LD_LIBRARY_PATH to point to the directory where libgcj.so was installed:

PATH=$PREFIX/bin:$PATH
LD_LIBRARY_PATH=$PREFIX/lib
export LD_LIBRARY_PATH

To build Kawa, you need to specify --with-gcj to configure which tells it to use GCJ.
Currently you also need to specify --without-awt --without-swing because GCJ does
not yet support AWT or Swing:

./configure --with-gcj --without-awt --without-swing --prefix $PREFIX

Then as before:

make
make install

Chapter 4: How to start up and run Kawa 8

3.3.5 Building Kawa under MS-Windows

Using the ant method is recommended for building Kawa under Microsoft Windows. You
may get an error message "Out of environment space." See http://support.microsoft.com/support/kb/articles/Q230/2/05.ASP
for a solution. Alternatively you can run the class org.apache.tools.ant.Main directly
from the Ant jar.

The Kawa configure and make process assumes a Unix-like environment. If you want to
build Kawa from source under Windows (95, 98, or NT), you could use a Unix empulation
package, such as the free Cygwin (http://sources.redhat.com/cygwin/). However, there
are some problems with filenames that make this more complicated than it should be. It
should be possible to build Kawa under Cygwin using gcj as descibed above.

4 How to start up and run Kawa

The easiest way to start up Kawa is to run the ‘kawa’ program. This finds your java
interpreter, and sets up ‘CLASSPATH’ correctly. If you have installed Kawa such $PREFIX/bin
is in your $PATH, just do:

kawa

However, ‘kawa’ only works if you have a Unix-like environment. On some platforms,
‘kawa’ is a program that uses the GNU ‘readline’ library to provide input line editing.

To run Kawa manually, you must start a Java interpreter. How you do this depends on
the Java interpreter. For JavaSoft’s JDK, you must have the Java interpreter in your PATH.
You must also make sure that the kawa/repl.class file, the rest of the Kawa packages,
and the standard Java packages can be found by searching CLASSPATH. See Section 3.1
[Running Java], page 3.

Then you do:
java kawa.repl

In either case, you will then get the ‘#|kawa:1|#’ prompt, which means you are in the
Kawa read-eval-print-loop. If you type a Scheme expression, Kawa will evaluate it. Kawa
will then print the result (if there is a non-"void" result).

4.1 Command-line arguments

You can pass various flags to Kawa, for example:
kawa -e ’(display (+ 12 4))(newline)’

or:
java kawa.repl -e ’(display (+ 12 4))(newline)’

Either causes Kawa to print ‘16’, and then exit.
At startup, Kawa executes an init file from the user’s home directory. The init file is

named .kawarc.scm on Unix-like systems (those for which the file separator is ’/’), and
kawarc.scm on other systems. This is done before the read-eval-print loop or before the
first -f or -c argument. (It is not run for a -e command, to allow you to set options to
override the defaults.)

Chapter 4: How to start up and run Kawa 9

‘-e expr’ Kawa evaluates expr, which contains one or more Scheme expressions. Does
not cause the ~/.kawarc.scm init file to be run.

‘-c expr’ Same as ‘-e expr’, except that it does cause the ~/.kawarc.scm init file to be
run.

‘-f filename-or-url’
Kawa reads and evaluates expressions from the file named by filename-or-url.
If the latter is ‘-’, standard input is read (with no prompting). Otherwise,
it is equivalent to evaluating ‘(load "filename-or-url")’. The filename-or-url
is interpreted as a URL if it is absolute - it starts with a "URI scheme" like
http:.

‘-s’
‘--’ The global variable ‘command-line-arguments’ is set to the remaining argu-

ments (if any), and an interactive read-eval-print loop is started. This uses the
same "console" as where you started up Kawa; use ‘-w’ to get a new window.

‘-w’ Creates a new top-level window, and runs an interactive read-eval-print in the
new window. See Section 4.3 [New-Window], page 11. Same as -e (scheme-
window #t). You can specify multiple ‘-w’ options, and also use ‘-s’.

‘--help’ Prints out some help.

‘--version’
Prints out the Kawa version number, and then exits.

‘--server portnum’
Start a server listening from connections on the specified portnum. Each con-
nection using the Telnet protocol causes a new read-eval-print-loop to started.
This option allows you to connect using any Telnet client program to a remote
"Kawa server".

‘--scheme’
Set the default language to Scheme. (This is the default unless you select
another language, or you name a file with a known extension on the command-
line.)

‘--elisp’
‘--emacs’
‘--emacs-lisp’

Set the default language to Emacs Lisp. (The implementation is quite incom-
plete.)

‘--lisp’
‘--clisp’
‘--clisp’
‘--commonlisp’
‘--common-lisp’

Set the default language to CommonLisp. (The implementation is very incom-
plete.)

‘--krl’ Set the default language to KRL. See Chapter 13 [KRL], page 76.

Chapter 4: How to start up and run Kawa 10

‘--brl’ Set the default language to KRL, in BRL-compatibility mode. See Chapter 13
[KRL], page 76.

‘--xquery’
Set the default language to the draft XML Query language. See the Kawa-XQuery
page (http://www.gnu.org/software/qexo/) for more information.

‘--xslt’ Set the default language to XSLT (XML Stylesheet Language Transforma-
tions). (The implementation is very incomplete.) See the Kawa-XSLT page
(http://www.gnu.org/software/qexo/xslt.html) for more information.

‘--output-format format’
‘--format format’

Change the default output format to that specified by format. See 〈undefined〉
[Named output formats], page 〈undefined〉 for more information and a list.

The following options control which calling conventions are used:

‘--full-tailcalls’
Use a calling convention that supports proper tail recursion.

‘--no-full-tailcalls’
Use a calling convention that does not support proper tail recursion. Self-tail-
recursion (i.e. a recursive call to the current function) is still implemented
correctly, assuming that the called function is known at compile time.

The default is currently --no-full-tailcalls because I believe it is faster (though I
have not done any measurements yet). It is also closer to the Java call model, so may be
better for people primarily interested in using Kawa for scripting Java systems.

Both calling conventions can co-exist: Code compiled with --full-tailcalls can call
code compiled with --no-full-tailcalls and vice versa.

The options ‘-C’, ‘-d’, ‘-T’, ‘-P’, ‘--main’ ‘--applet’, and --servlet are used to compile
a Scheme file; see Section 6.2 [Files compilation], page 13. The option ‘--connect portnum’
is only used by the ‘kawa’ front-end program.

The following options are useful if you want to debug or understand how Kawa works.

‘--debug-dump-zip’
Normally, when Kawa loads a soyrce file, or evaluates a non-trivial expression,
it generates new internal Java classes but does not write them out. This option
asks it to write out generated classes in a ‘.zip’ archive whose name has the
prefix ‘kawa-zip-dump-’.

‘--debug-print-expr’
Kawa translates source language forms into an internal Expression data struc-
ture. This option causes that data structure to be written out in a readable
format to the standard output.

‘--debug-print-final-expr’
Similar to the previous option, but prints out the Expression after various
transformations and optimizations have been done, and just before code gener-
ation.

Chapter 4: How to start up and run Kawa 11

If there are further command-line arguments after the options have been processed, then
the first remaining argument names a file that is read and evaluated. If there is no such
argument, then Kawa enters an interactive read-eval-print loop, but only if none of the ‘-c’,
‘-e’, ‘-f’, ‘-s’, ‘-C’, or ‘--’ options were specified.

4.2 Running Command Scripts

Unix-like systems support a mechanism where a script can specify a programs that
should execute it. The convention is that the first line of the file should start with the two
characters ‘#!’ followed by the absolute path of the program that should process (interpret)
the script.

This is convention works well for script languages that use ‘#’ to indicate the start of
a comment, since the interpreter will automatically ignore the line specifying the inter-
preter filename. Scheme, however, uses ‘#’ for various special objects, and Kawa specifically
uses ‘#!’ as a prefix for various Section 7.3 [Special named constants], page 20 such as
#!optional.

Kawa does recognize the three-character sequence ‘#!/’ at the beginning of a file as
special, and ignores it. So you can specify command interpreters, as long as you don’t put
a space between the ‘#!’ and the interpreter filename. Here is an example:

#!/usr/local/bin/kawa
(format #t "The time is ~s~%" (make <java.util.Date>))

If this file has the execute permission set and is in your PATH, then you can execute it
just my naming it on command line. The system kernel will automatically execute kawa,
passing it the filename as an argument.

Note that the full path-name of the kawa interpreter must be hard-wired into the script.
This means you may have to edit the script depending on where Kawa is installed on your
system. Another possible problem is that the interpreter must be an actual program, not a
shell script. Depending on how you configure and install Kawa, kawa can be a real program
or a script. You can avoid both problems by the env program, available on most modern
Unix-like systems:

#!/usr/bin/env kawa
(format #t "The time is ~s~%" (make <java.util.Date>))

4.3 Running a Command Interpreter in a new Window

An alternative interface runs the Java read-eval-print-loop inside a new window. This
is in some ways nicer. One reason is that it provides better editing. You can also create
new windows. They can either have different top-level environments or they can share
environments. To try it, do:

java kawa.repl -w

4.4 Exiting Kawa

Kawa normally keeps running as long as there is an active read-eval-print loop still
awaiting input or there is an unfinished other computation (such as requested by a ‘-e’ of
‘-f’ option).

Chapter 6: Compiling Scheme code to byte-code or an executable 12

To close a read-eval-print-loop, you can type the special literal #!eof at top level. This
is recognized as end-of-file. Unfortunately, due to thread-related complications, just typing
an end-of-file character (normally ctrl/D until Unix), will not work.

If the read-eval-print-loop is in a new window, you can select ‘Close’ from the ‘File’
menu.

To exit the entire Kawa session, call the exit procedure (with 0 or 1 integer arguments).

5 Features of R5RS not implemented

Kawa implements all the required and optional features of R5RS, with the following
exceptions.

The entire "numeric tower" is implemented. However, some transcendental function
only work on reals. Integral function do not necessarily work on inexact (floating-point)
integers. (The whole idea of "inexact integer" in R5RS seems rather pointless ...)

Also, call-with-current-continuation is only "upwards" (?). I.e. once a continua-
tion has been exited, it cannot be invoked. These restricted continuations can be used to
implement catch/throw (such as the examples in R4RS), but not co-routines or backtrack-
ing.

Kawa now does general tail-call elimination, but only if you use the flag --full-tail-
calls. (Currently, the eval function itself is not fully tail-recursive, in violation of R5RS.)
The --full-tail-calls flag is not on by default, partly because it is noticably slower
(though I have not measured how much), and partly I think it is more useful for Kawa
to be compilatible with standard Java calling conventions and tools. Code compiled with
--full-tail-calls can call code compiled without it and vice versa.

Even without --full-tail-calls, if the compiler can prove that the procedure being
called is the current function, then the tail call will be replaced by a jump. This means the
procedure must be defined using a letrec, not a define (because the compiler does not know
if someone might re-define a global definition), and there must be no assignments (using
set!) to the procedure binding.

6 Compiling Scheme code to byte-code or an
executable

All Scheme functions and source files are invisibly compiled into internal Java byte-
codes. A traditional evaluator is only used for top-level directly entered expressions outside
a lambda. (It would have been simpler to also byte-compile top-level expressions by sur-
rounding them by a dummy lambda. However, this would create a new Class object in the
Java VM for every top-level expression. This is undesirable unless you have a VM that can
garbage collect Class objects.)

To save speed when loading large Scheme source files, you probably want to pre-compile
them and save them on your local disk. There are two ways to do this.

You can compile a Scheme source file to a single archive file. You do this using the
compile-file function. The result is a single file that you can move around and load

Chapter 6: Compiling Scheme code to byte-code or an executable 13

just like the .scm source file. You just specify the name of the archive file to the load
procedure. Currently, the archive is a "zip" archive and has extension ".zip"; a future
release will probably use "Java Archive" (jar) files. The advantage of compiling to an
archive is that it is simple and transparent. A minor disadvantage is that it causes the Java
"verifier" to be run when functions are loaded from it, which takes a little extra time.

Alternatively, you can compile a Scheme source file to a collection of ‘.class’ files. You
then use the standard Java class loading mechanism to load the code. The Java "verifier"
does not need to get run, which makes loading a little faster. The compiled class files do
have to be installed be installed somewhere in the CLASSPATH.

You can also compile your Scheme program to native code using GCJ.

6.1 Compiling Scheme to an archive file

Functioncompile-file source-file compiled-archive
Compile the source-file, producing a .zip archive compiled-file.

For example, to byte-compile a file ‘foo.scm’ do:
(compile-file "foo.scm" "foo")

This will create ‘foo.zip’, which contains byte-compiled "j-code". You can
move this file around, without worrying about class paths. To load the compiled
file, you can later load the named file, as in either (load "foo") or (load
"foo.zip"). This should have the same effect as loading ‘foo.scm’, except you
will get the faster byte-compiled versions.

6.2 Compiling Scheme to a set of .class files

Invoking ‘kawa’ (or ‘java kawa.repl’) with the ‘-C’ flag will compile a ‘.scm’ source file
into one or more ‘.class’ files:

kawa --main -C myprog.scm

You run it as follows:
kawa [-d outdirectory] [-P prefix] [-T topname] [--main | --applet | --servlet] -C in-
file ...

Note the ‘-C’ must come last, because ‘Kawa’ processes the arguments and options in
order,

Here:

‘-C infile ...’
The Scheme source files we want to compile.

‘-d outdirectory ’
The directory under which the resulting ‘.class’ files will be. The default is
the current directory.

‘-P prefix’ A string to prepend to the generated class names. The default is the empty
string.

Chapter 6: Compiling Scheme code to byte-code or an executable 14

‘-T topname’
The name of the "top" class - i.e. the one that contains the code for the top-
level expressions and definitions. The default is generated from the infile and
prefix.

‘--main’ Generate a main method so that the resulting "top" class can be used as a
stand-alone application. See Section 6.4 [Application compilation], page 15.

‘--applet’
The resulting class inherits from java.applet.Applet, and can be used as an
applet. See Section 6.5 [Applet compilation], page 15.

‘--servlet’
The resulting class implements javax.servlet.http.HttpServlet, and can
be used as an servlet in a servlet container like Tomcat.

When you actually want to load the classes, the outdirectory must be in your ‘CLASSPATH’.
You can use the standard load function to load the code, by specifying the top-level class,
either as a file name (relative to outdirectory) or a class name. E.g. if you did:

kawa -d /usr/local/share/java -P my.lib. -T foo -C foosrc.scm

you can use either:

(load "my.lib.foo")

or:

(load "my/lib/foo.class")

If you are compiling a Scheme source file (say ‘foosrc.scm’) that uses macros defined
in some other file (say ‘macs.scm’), you need to make sure the definitions are visible to the
compiler. One way to do that is with the ‘-f’:

kawa -f macs.scm -C foosrc.scm

6.3 Compilation options

Various named option control how Kawa compiles certain forms.

‘--module-static’
If no module-static is specified, generate a static module (as if (module-
static #t) were specified). See Section 10.8 [Module classes], page 61.

‘--warn-invoke-unknown-method’
Emit a warning if the invoke function calls a named method for which there is
no matching method in the compile-time type of the receiver. This (currently)
defaults to on; to turn it off use the --no-warn-invoke-unknown-method flag.

‘--warn-undefined-variable’
Emit a warning if the code references a variable which is neither in lexical
scope nor in the compile-time dynamic (global) environment. This is useful for
catching typos. (A define-variable form can be used to silence warnings. It
declares to the compiler that a variable is to be resolved dynamically.)

Chapter 6: Compiling Scheme code to byte-code or an executable 15

An option can be followed by a value, as in --warn-invoke-unknown-method=no. For
boolean options, the values yes, true, on, or 1 enable the option, while no, false, off,
or 0 disable it. You can also negate an option by prefixing it with no-: The option --no-
warn-invoke-unknown-method is the same as --warn-invoke-unknown-method=no.

You can set the same options (except, for now, module-static) within your Scheme
source file. (In that case they override the options on the command line.)

Syntaxmodule-compile-options [key: value] ...
This sets the value of the key option to value for the current module (source
file). It takes effect as soon it is seen during the first macro-expansion pass,
and is active thereafter (unless overridden by with-compile-options).
The key is one of the above option names. (The following colon make it a Kawa
keyword.) The value must be a literal value: either a boolean (#t or #f), a
number, or a string, depending on the key. (All the options so far are boolean
options.)

(module-compile-options warn-undefined-variable: #t)
;; This causes a warning message that y is unknown.
(define (func x) (list x y))

Syntaxwith-compile-options [key: value] ... body
Similar to module-compile-options, but the option is only active within body.

(define (func x)
(with-compile-options warn-invoke-unknown-method: #f
(invoke x ’size)))

6.4 Compiling Scheme to a standalone application

A Java application is a Java class with a special method (whose name is main). The
application can be invoked directly by naming it in the Java command. If you want to
generate an application from a Scheme program, create a Scheme source file with the defi-
nitions you need, plus the top-level actions that you want the application to execute. You
can compile in the regular way decribed in the previous section, but add the --main option.
For example, assuming your Scheme file is MyProgram.scm:

kawa --main -C MyProgram.scm

This will create a MyProgram.class which you can either load (as decribed in the
previous section), or invoke as an application:

java MyProgram [args]

Your Scheme program can access the command-line arguments args by using the global
variable ‘command-line-arguments’.

6.5 Compiling Scheme to an applet

An applet is a Java class that inherits from java.applet.Applet. The applet can be
downloaded and run in a Java-capable web-browser. To generate an applet from a Scheme
program, write the Scheme program with appropriate definitions of the functions ‘init’,

Chapter 6: Compiling Scheme code to byte-code or an executable 16

‘start’, ‘stop’ and ‘destroy’. You must declare these as zero-argument functions with a
<void> return-type.

Here is an example, based on the scribble applet in Flanagan’s "Java Examples in a
Nutshell" (O’Reilly, 1997):

(define-private last-x 0)
(define-private last-y 0)

(define (init) <void>
(let ((applet :: <java.applet.Applet> (this)))
(invoke applet ’addMouseListener
(object (<java.awt.event.MouseAdapter>)
((mousePressed (e :: <java.awt.event.MouseEvent>)) <void>
(set! last-x (invoke e ’getX))
(set! last-y (invoke e ’getY)))))

(invoke applet ’addMouseMotionListener
(object (<java.awt.event.MouseMotionAdapter>)
((mouseDragged (e :: <java.awt.event.MouseEvent>)) <void>
(let ((g :: <java.awt.Graphics>
(invoke applet ’getGraphics))

(x :: <int> (invoke e ’getX))
(y :: <int> (invoke e ’getY)))

(invoke g ’drawLine last-x last-y x y)
(set! last-x x)
(set! last-y y)))))))

(define (start) <void> (format #t "called start.~%~!"))
(define (stop) <void> (format #t "called stop.~%~!"))
(define (destroy) <void> (format #t "called destroy.~%~!"))

You compile the program with the ‘--applet’ flag in addition to the normal ‘-C’ flag:
java kawa.repl --applet -C scribble.scm

You can then create a ‘.jar’ archive containing your applet. You also need to include the
Kawa classes in the ‘.jar’, or you can include a MANIFEST file that specifies Class-Path to
use a Java 2 download extension (http://java.sun.com/docs/books/tutorial/ext/basics/download.html).

jar cf scribble.jar scribble*.class other-classes ...

Finally, you create an ‘.html’ page referencing your applet:
<html><head><title>Scribble testapp</title></head>
<body><h1>Scribble testapp</h1>
You can scribble here:

<applet code="scribble.class" archive="scribble.jar" width=200 height=200>
Sorry, Java is needed.</applet>
</body></html>

6.6 Compiling Scheme to a native executable

You can compile your Scheme program to native code using GCJ, as long as you have
built Kawa using GCJ.

Chapter 7: Extensions 17

First, you need to compile the Scheme code to a set of .class files; see Section 6.2 [Files
compilation], page 13.

kawa --main -C myprog.scm

Then to create an executable myprog do:
gckawa --main=myprog myprog*.class -o myprog

The gckawa is a simple shell script that calls gcj. The reason for the wildcard in
myprog*.class is that sometimes Kawa will generate some helper classes in addition to
myprog.class. The --main option tell gcj which class contains the main method it should
use. The -o option names the resulting executable program. The -lkawa option tells the
linker it should link with the kawa shared library, and the -L$PREFIX/bin option tells the
linker where it can find that library.

7 Extensions

7.1 Syntax and conditional compilation

Syntaxdefine-syntax ..
Pattern ...

Syntaxdefmacro name lambda-list form ...
Defines an old-style macro a la Common Lisp, and installs (lambda lambda-
list form ...) as the expansion function for name. When the translator sees
an application of name, the expansion function is called with the rest of the
application as the actual arguments. The resulting object must be a Scheme
source form that is futher processed (it may be repeatedly macro-expanded).
If you define a macro with defmacro, you (currently) cannot use the macro
in the same compilation as the definition. This restriction does not apply to
macros defined by define-syntax.

Functiongentemp
Returns a new (interned) symbol each time it is called. The symbol names are
implementation-dependent. (This is not directly macro-related, but is often
used in conjunction with defmacro to get a fresh unique identifier.)

Syntaxcond-expand cond-expand-clause* [(else command-or-definition*)]
cond-expand-clause ::= (feature-requirement command-or-definition*)
feature-requirement ::= feature-identifier
| (and feature-requirement*)
| (or feature-requirement*)
| (not feature-requirement)

feature-identifier ::= a symbol which is the name or alias of a SRFI
The cond-expand form tests for the existence of features at macro-expansion
time. It either expands into the body of one of its clauses or signals an er-
ror during syntactic processing. cond-expand expands into the body of the

Chapter 7: Extensions 18

first clause whose feature requirement is currently satisfied; the else clause, if
present, is selected if none of the previous clauses is selected.
A feature requirement has an obvious interpretation as a logical formula, where
the feature-identifier variables have meaning true if the feature corresponding
to the feature identifier, as specified in the SRFI registry, is in effect at the
location of the cond-expand form, and false otherwise. A feature requirement
is satisfied if its formula is true under this interpretation.
Examples:

(cond-expand
((and srfi-1 srfi-10)
(write 1))
((or srfi-1 srfi-10)
(write 2))
(else))

(cond-expand
(command-line
(define (program-name) (car (argv)))))

The second example assumes that command-line is an alias for some feature
which gives access to command line arguments. Note that an error will be
signaled at macro-expansion time if this feature is not present.

7.2 Multiple values

The multiple-value feature was added in R5RS.

Functionvalues object ...
Delivers all of its arguments to its continuation.

Functioncall-with-values thunk receiver
Call its thunk argument with a continuation that, when passed some values,
calls the receiver procedure with those values as arguments.

Syntaxlet-values ((formals expression) ...) body
Each formals should be a formal arguments list as for a lambda, cf section 4.1.4
of the R5RS.
The expressions are evaluated in the current environment, the variables of the
formals are bound to fresh locations, the return values of the expressions are
stored in the variables, the body is evaluated in the extended environment, and
the values of the last expression of body are returned. The body is a "tail
body", cf section 3.5 of the R5RS.
The matching of each formals to values is as for the matching of formals to
arguments in a lambda expression, and it is an error for an expression to return
a number of values that does not match its corresponding formals.

(let-values ((a b . c) (values 1 2 3 4)))
(list a b c)) --> (1 2 (3 4))

Chapter 7: Extensions 19

(let ((a ’a) (b ’b) (x ’x) (y ’y))
(let-values (((a b) (values x y))

((x y) (values a b)))
(list a b x y))) --> (x y a b)

Syntaxlet*-values ((formals expression) ...) body
Each formals should be a formal arguments list as for a lambda expression, cf
section 4.1.4 of the R5RS.

let*-values is similar to let-values, but the bindings are performed sequen-
tially from left to right, and the region of a binding indicated by (formals ex-
pression) is that part of the let*-values expression to the right of the binding.
Thus the second binding is done in an environment in which the first binding
is visible, and so on.

(let ((a ’a) (b ’b) (x ’x) (y ’y))
(let*-values (((a b) (values x y))

((x y) (values a b)))
(list a b x y))) --> (x y x y)

Syntaxreceive formals expression body
The formals, expression, and body are as described in R5RS. Specifically, for-
mals can have any of three forms:

‘(variable1 ... variablen)’
The environment in which the receive-expression is evaluated is ex-
tended by binding variable1, ..., variablen to fresh locations. The
expression is evaluated, and its values are stored into those loca-
tions. (It is an error if expression does not have exactly n values.)

‘variable’ The environment in which the receive-expression is evaluated is
extended by binding variable to a fresh location. The expression is
evaluated, its values are converted into a newly allocated list, and
the list is stored in the location bound to variable.

‘(variable1 ... variablen . variablen+1)’
The environment in which the receive-expression is evaluated is
extended by binding variable1, ..., variablen+1 to fresh locations.
The expression is evaluated. Its first n values are stored into the
locations bound to variable1 ... variablen. Any remaining values
are converted into a newly allocated list, which is stored into the
location bound to variablen+1 (It is an error if expression does not
have at least n values.)

In any case, the expressions in body are evaluated sequentially in the extended
environment. The results of the last expression in the body are the values of
the receive-expression.

Functionvalues-append arg1 ...
The values resulting from evaluating each argument are appended together.

Chapter 7: Extensions 20

7.3 Special named constants

Constant#!optional
Special self-evaluating literal used in lambda parameter lists before optional
parameters.

Constant#!rest
Special self-evaluating literal used in lambda parameter lists before the rest
parameter.

Constant#!key
Special self-evaluating literal used in lambda parameter lists before keyword
parameters.

Constant#!eof
The end-of-file object.

Note that if the Scheme reader sees this literal at top-level, it is returned liter-
ally. This is indistinguishable from coming to the end of the input file. If you
do not want to end reading, but want the actual value of #!eof, you should
quote it.

Constant#!void
The void value. Same as (values). If this is the value of an expression in a
read-eval-print loop, nothing is printed.

Constant#!null
The Java null value. This is not really a Scheme value, but is useful when
interfacing to low-level Java code.

7.4 Keywords

Keywords are similar to symbols. The main difference is that keywords are self-evaluating
and therefore do not need to be quoted in expressions. They are used mainly for specifying
keyword arguments.

keyword ::= identifier:

An alternative syntax, with the colon first, is supported for compatibility with Common
Lisp and some other Scheme implementations:

keyword ::= :identifier

Putting the colon first has exactly the same effect as putting it last; putting is last is
recommended, and is how keywords are printed.

A keyword is a single token; therefore no whitespace is allowed between the identifier
and the colon (which is not considered part of the name of the keyword).

Functionkeyword? obj
Return #t if obj is a keyword, and otherwise returns #f.

Chapter 7: Extensions 21

Functionkeyword->string keyword
Returns the name of keyword as a string. The name does not include the final
#\:.

Functionstring->keyword string
Returns the keyword whose name is string. (The string does not include a final
#\:.)

7.5 Procedures

Functionapply proc [arg1 ...] args
Args must be a sequence (list, vector, or string) or a primitive Java array. (This
is an extension over standard Scheme, which requires that args be a list.) Calls
the proc (which must be a procedure), using as arguments the arg1... values
plus all the elements of args.

Syntaxconstant-fold proc arg1 ...
Same as (proc arg1 ...), unless proc and all the following arguments are
compile-time constants. (That is: They are either constant, or symbols that
have a global binding and no lexical binding.) In that case, proc is applied
to the arguments at compile-time, and the result replaces the constant-fold
form. If the application raises an exception, a compile-time error is reported.
For example:

(constant-fold vector ’a ’b ’c)

is equivalent to (quote #(a b c)), assuming vector has not been re-bound.

7.5.1 Procedure properties

You can associate arbitrary properties with any procedure. Each property is a (key,
value)-pair. Usually the key is a symbol, but it can be any object.

The system uses certain internal properties: ’name refers to the name used when a
procedure is printed; ’emacs-interactive is used to implement Emacs interactive spec-
ification; ’setter is used to associate a setter prcedure.

Functionprocedure-property proc key [default]
Get the property value corresponding to the given key. If proc has no property
with the given key, return default (which defaults to #f) instead.

Functionset-procedure-property! proc key value
Associate the given value with the key property of proc.

To change the print name of the standard + procedure (probably not a good idea!), you
could do:

(set-procedure-property! + ’name ’PLUS)

Note this only changes the name property used for printing:

Chapter 7: Extensions 22

+ => #<procedure PLUS>
(+ 2 3) => 5
(PLUS 3 4) => ERROR

As a matter of style, it is cleaner to use the define-procedure form, as it is a more
declarative interface.

Syntaxdefine-procedure name [propname: propvalue] ... method ...
Defines name as a compound procedure consisting of the specified methods,
with the associated properties. Applying name select the "best" method, and
applies that. See the following section on generic procedures.
For example, the standard vector-ref procedure specifies one method, as well
as the setter property:

(define-procedure vector-ref
setter: vector-set!
(lambda ((vector :: <vector>) (k :: <int>))

(invoke vector ’get k)))

7.5.2 Generic (dynamically overloaded) procedures

A generic procedure is a collection of method procedures. (A "method procedure" is not
the same as a Java method, but the terms are related.) You can call a generic procedure,
which selects the "closest match" among the component method procedures: I.e. the most
specific method procedure that is applicable given the actual arguments.

Note: The current implementation of selecting the "best" method is not reliable
if there is more than one method. It can select depending on argument count,
and it can select between primitive Java methods. However, it cannot yet do
what you probably hope for: select between different Scheme procedures based
on parameter types.

Functionmake-procedure [keyword: value]... method...
Create a generic procedure given the specific methods. You can also specify
property values for the result.
The keywords specify how the arguments are used. A method: keyword is op-
tional and specifies that the following argument is a method. A name: keyword
specifies the name of the resulting procedure, when used for printing. Unrec-
ognized keywords are used to set the procedure properties of the result.

(define plus10 (make-procedure foo: 33 name: ’Plus10
method: (lambda (x y) (+ x y 10))
method: (lambda () 10)))

7.5.3 Extended Formal Arguments List

The formal arguments list of a lambda expression has two extendsions over standard
Scheme: Kawa borrows the extended formal argument list of DSSSL, and Kawa allows you
to declare the type of the parameter.

lambda-expression ::= (lambda formals [rtype] body)
where

Chapter 7: Extensions 23

formals ::= (formal-arguments) | rest-arg

You can of course also use the extended format in a define:
(define (name formal-arguments) [rtype] body)
formal-arguments ::=

req-opt-args (rest-key-args | . rest-arg)
req-opt-args ::= req-arg ... [#!optional opt-arg ...]
rest-key-args ::= [#!rest rest-arg] [#!key key-arg ...]
req-arg ::= variable [:: type] | (variable [[::] type])
opt-arg ::= arg-with-default
key-arg ::= arg-with-default
arg-with-default ::= variable [:: type]

| (variable [:: type [initializer] | initializer [[::] type]])
rest-arg ::= variable

When the procedure is applied to a list of actual arguments, the formal and actual
arguments are processed from left to right as follows:

• The req-args are bound to actual arguments starting with the first actual argument.
It shall be an error if there are fewer actual arguments then there are req-args.

• Next the opt-args are bound to remaining actual arguemnts. If there are fewer re-
maining actual arguments than there are opt-args, then the remaining variables are
bound to the corresponding initializer, if one was specified, and otherwise to #f. The
initializer is evaluated in an environment in which all the previous formal parameters
have been bound.

• If there is a rest-arg, it is bound to a list of all the remaining actual arguments. These
remaining actual arguments are also eligible to be bound to keyword arguments. If
there is no rest-arg and there are no key-args, then it shall be an error if there are any
remaining actual arguments.

• If #!key was specified, then there shall be an even number of remaining actual argu-
ments. These are interpreted as a series of pairs, where the first member of each pair is
a keyword specifying the argument name, and the second is the corresponding value. It
shall be an error if the first member of a pair is not a keyword. It shall be an error if the
argument name is not the same as a variable in a key-args, unless there is a rest-arg. If
the same argument name occurs more than once in the list of actual arguments, then
the first value is used. If there is no actual argument for a particular key-arg, then the
variable is bound to the corresponding initializer, if one was specified, and otherwise
to #f. The initializer is evaluated in an environment in which all the previous formal
parameters have been bound.

If a type is specified, the corresponding actual argument (or the initializer default value)
is coerced to the specified type. In the function body, the parameter has the specified type.

If rtype (the first form of the function body) is an unbound identifier of the form <TYPE>
(that is the first character is ‘<’ and the last is ‘>’), then tha specifies the functions return
type. It is syntactic sugar for (as <TYPE> (begin BODY)).

Syntaxcut slot-or-expr slot-or-expr* [<...>]
where each slot-or-expr is either an expression or the literal symbol <>.

Chapter 7: Extensions 24

It is frequently necessary to specialize some of the parameters of a multi-
parameter procedure. For example, from the binary operation cons one might
want to obtain the unary operation (lambda (x) (cons 1 x)). This special-
ization of parameters is also known as partial application, operator section, or
projection. The macro cut specializes some of the parameters of its first ar-
gument. The parameters that are to show up as formal variables of the result
are indicated by the symbol <>, pronouced as "slot". In addition, the symbol
<...>, pronounced as "rest-slot", matches all residual arguments of a variable
argument procedure.

A cut-expression is transformed into a lambda expression with as many formal
variables as there are slots in the list slot-or-expr*. The body of the resulting
lambda expression calls the first slot-or-expr with arguments from the slot-or-
expr* list in the order they appear. In case there is a rest-slot symbol, the
resulting procedure is also of variable arity, and the body calls the first slot-or-
expr with remaining arguments provided to the actual call of the specialized
procedure.

Here are some examples:
(cut cons (+ a 1) <>) is the same as (lambda (x2) (cons (+ a 1) x2))
(cut list 1 <> 3 <> 5) is the same as (lambda (x2 x4) (list 1 x2 3 x4 5))
(cut list) is the same as (lambda () (list))
(cut list 1 <> 3 <...>) is the same as (lambda (x2 . xs) (apply list 1 x2 3 xs))

The first argument can also be a slot, as one should expect in Scheme:
(cut <> a b) is the same as (lambda (f) (f a b))

Syntaxcute slot-or-expr slot-or-expr* [<...>]
The macro cute (a mnemonic for "cut with evaluated non-slots") is similar
to cut, but it evaluates the non-slot expressions at the time the procedure is
specialized, not at the time the specialized procedure is called.

For example:
(cute cons (+ a 1) <>) is the same as (let ((a1 (+ a 1))) (lambda (x2) (cons a1 x2)))

As you see from comparing this example with the first example above, the cute-
variant will evaluate (+ a 1) once, while the cut-variant will evaluate it during
every invocation of the resulting procedure.

7.6 Quantities and Numbers

As a super-class of numbers, Kawa also provides quantities. A quantity is a product of
a unit and a pure number. The number part can be an arbitrary complex number. The
unit is a product of integer powers of base units, such as meter or second.

Kawa quantities are a generalization of the quantities in DSSSL, which only has length-
derived quantities.

The precise syntax of quantity literals may change, but some examples are 10pt (10
points), 5s (5 seconds), and 4cm^2 (4 square centimeters).

Chapter 7: Extensions 25

Functionquantity? object
True iff object is a quantity. Note that all numbers are quantities, but not the
other way round. Currently, there are no quantities that re not numbers. To
distinguish a plain unit-less number from a quantity, you can use complex?.

Functionquantity->number q
Returns the pure number part of the quantity q, relative to primitive (base)
units. If q is a number, returns q. If q is a unit, yields the magitude of q
relative to base units.

Functionquantity->unit q
Returns the unit of the quantity q. If q is a number, returns the empty unit.

Functionmake-quantity x unit
Returns the product of x (a pure number) and unit. You can specify a string
instead of unit, such as "cm" or "s" (seconds).

Syntaxdefine-base-unit unit-name dimension
Define unit-name as a base (primitive) unit, which is used to measure along the
specified dimension.

(define-base-unit dollar "Money")

Syntaxdefine-unit unit-name expression
Define unit-name as a unit (that can be used in literals) equal to the quantity
expression.

(define-unit cent 0.01dollar)

Functionquotient x y
Generalized to arbitrary real numbers, using the definition: (truncate (/ x
y)).

Functionremainder x y
Generalized to arbitrary real numbers, using the definition: (- x (* y (truncate
(/ x y)))). If y is 0, the result is x - i.e. we take (* 0 (quotient x 0)) to be
0. The result is inexact if either argument is inexact, even if x is exact and y
is 0.

Functionmodulo x y
Generalized to arbitrary real numbers, using the definition: (- x (* y (floor
(/ x y)))). If y is 0, the result is x. The result is inexact if either argument is
inexact, even if x is exact and y is 0.

7.7 Logical Number Operations

These functions operate on the 2’s complement binary representation of an exact integer.

Functionlogand i ...
Returns the bit-wise logical "and" of the arguments. If no argument is given,
the result is -1.

Chapter 7: Extensions 26

Functionlogior i ...
Returns the bit-wise logical "(inclusive) or" of the arguments. If no argument
is given, the result is 0.

Functionlogxor i ...
Returns the bit-wise logical "exclusive or" of the arguments. If no argument is
given, the result is 0.

Functionlognot i
Returns the bit-wise logical inverse of the argument.

Functionlogop op x y
Perform one of the 16 bitwise operations of x and y, depending on op.

Functionlogtest i j
Returns true if the arguments have any bits in common. Same as (not (zero?
(logand i j))), but is more efficient.

Functionlogbit? i pos
Returns #t iff the bit numbered pos in i is one.

Functionarithmetic-shift i j
Shifts i by j. It is a "left" shift if j>0, and a "right" shift if j<0.
The result is equal to (floor (* i (expt 2 j))).

Functionash i j
Alias for arithmetic-shift.

Functionlogcount i
Count the number of 1-bits in i, if it is non-negative. If i is negative, count
number of 0-bits.

Functioninteger-length i
Return number of bits needed to represent i in an unsigned field. Regardless
of the sign of i, return one less than the number of bits needed for a field that
can represent i as a two’s complement integer.

Functionbit-extract n start end
Return the integer formed from the (unsigned) bit-field starting at start and
ending just before end. Same as (arithmetic-shift (bitand n (bitnot
(arithmetic-shift -1 end))) (- start)).

7.8 Lists

The SRFI-1 List Library (http://srfi.schemers.org/srfi-1/srfi-1.html) is avail-
able, though not enabled by default. To use its functions you must (require ’list-lib)
or (require ’srfi-1).

(require ’list-lib)
(iota 5 0 -0.5) ;; => (0.0 -0.5 -1.0 -1.5 -2.0)

Chapter 7: Extensions 27

Functionreverse! list
The result is a list consisting of the elements of list in reverse order. No new
pairs are allocated, instead the pairs of list are re-used, with cdr cells of list
reversed in place. Note that if list was pair, it becomes the last pair of the
reversed result.

7.9 Strings

Functionstring-upcase str
Return a new string where the letters in str are replaced by their upper-case
equivalents.

Functionstring-downcase str
Return a new string where the letters in str are replaced by their lower-case
equivalents.

Functionstring-capitalize str
Return a new string where the letters in str that start a new word are replaced
by their title-case equivalents, while non-initial letters are replaced by their
lower-case equivalents.

Functionstring-upcase! str
Destructively modify str, replacing the letters by their upper-case equivalents.

Functionstring-downcase! str
Destructively modify str, replacing the letters by their upper-lower equivalents.

Functionstring-capitalize! str
Destructively modify str, such that the letters that start a new word are replaced
by their title-case equivalents, while non-initial letters are replaced by their
lower-case equivalents.

7.10 Multi-dimensional Arrays

Arrays are heterogeneous data structures whose elements are indexed by integer se-
quences of fixed length. The length of a valid index sequence is the rank or the number of
dimensions of an array. The shape of an array consists of bounds for each index.

The lower bound b and the upper bound e of a dimension are exact integers with (<=
b e). A valid index along the dimension is an exact integer k that satisfies both (<= b k)
and (< k e). The length of the array along the dimension is the difference (- e b). The
size of an array is the product of the lengths of its dimensions.

A shape is specified as an even number of exact integers. These are alternately the lower
and upper bounds for the dimensions of an array.

Functionarray? obj
Returns #t if obj is an array, otherwise returns #f.

Chapter 7: Extensions 28

Functionshape bound ...
Returns a shape. The sequence bound ... must consist of an even number of
exact integers that are pairwise not decreasing. Each pair gives the lower and
upper bound of a dimension. If the shape is used to specify the dimensions of
an array and bound ... is the sequence b0 e0 ... bk ek ... of n pairs of bounds,
then a valid index to the array is any sequence j0 ... jk ... of n exact integers
where each jk satisfies (<= bk jk) and (< jk ek).
The shape of a d-dimensional array is a d 2 array where the element at k 0
contains the lower bound for an index along dimension k and the element at k
1 contains the corresponding upper bound, where k satisfies (<= 0 k) and (<
k d).

Functionmake-array shape
Functionmake-array shape obj

Returns a newly allocated array whose shape is given by shape. If obj is pro-
vided, then each element is initialized to it. Otherwise the initial contents of
each element is unspecified. The array does not retain a reference to shape.

Functionarray shape obj ...
Returns a new array whose shape is given by shape and the initial contents
of the elements are obj ... in row major order. The array does not retain a
reference to shape.

Functionarray-rank array
Returns the number of dimensions of array.

(array-rank
(make-array (shape 1 2 3 4)))

Returns 2.

Functionarray-start array k
Returns the lower bound for the index along dimension k.

Functionarray-end array k
Returns the upper bound for the index along dimension k.

Functionarray-ref array k ...
Functionarray-ref array index

Returns the contents of the element of array at index k The sequence k
... must be a valid index to array. In the second form, index must be either a
vector or a 0-based 1-dimensional array containing k

(array-ref (array (shape 0 2 0 3)
’uno ’dos ’tres
’cuatro ’cinco ’seis)

1 0)

Returns cuatro.
(let ((a (array (shape 4 7 1 2) 3 1 4)))

(list (array-ref a 4 1)

Chapter 7: Extensions 29

(array-ref a (vector 5 1))
(array-ref a (array (shape 0 2)

6 1))))

Returns (3 1 4).

Functionarray-set! array k ... obj
Functionarray-set! array index obj

Stores obj in the element of array at index k Returns the void value. The
sequence k ... must be a valid index to array. In the second form, index must
be either a vector or a 0-based 1-dimensional array containing k

(let ((a (make-array
(shape 4 5 4 5 4 5))))

(array-set! a 4 4 4 "huuhkaja")
(array-ref a 4 4 4))

Returns "huuhkaja".

Functionshare-array array shape proc
Returns a new array of shape shape that shares elements of array through proc.
The procedure proc must implement an affine function that returns indices of
array when given indices of the array returned by share-array. The array
does not retain a reference to shape.

(define i_4
(let* ((i (make-array

(shape 0 4 0 4)
0))

(d (share-array i
(shape 0 4)
(lambda (k)

(values k k)))))
(do ((k 0 (+ k 1)))

((= k 4))
(array-set! d k 1))

i))

Note: the affinity requirement for proc means that each value must be a sum
of multiples of the arguments passed to proc, plus a constant.

Implementation note: arrays have to maintain an internal index mapping from
indices k1 ... kd to a single index into a backing vector; the composition of
this mapping and proc can be recognised as (+ n0 (* n1 k1) ... (* nd kd))
by setting each index in turn to 1 and others to 0, and all to 0 for the constant
term; the composition can then be compiled away, together with any complexity
that the user introduced in their procedure.

Multi-dimensional arrays are specified by SRFI-25 (http://srfi.schemers.org/srfi-25/srfi-25.html).
In Kawa, a one-dimensional array whose lower bound is 0 is also a sequence. Furthermore, if
such an array is simple (not created share-array) it will be implemented using a <vector>.
Uniform vectors and strings are also arrays in Kawa. For example:

Chapter 7: Extensions 30

(share-array
(f64vector 1.0 2.0 3.0 4.0 5.0 6.0)
(shape 0 2 0 3)
(lambda (i j) (+ (* 2 i) j)))

evaluates to a two-dimensionsal array of <double>:
#2a((1.0 2.0 3.0) (3.0 4.0 5.0))

7.11 Uniform vectors

Uniform vectors are vectors whose elements are of the same numeric type. The are de-
fined by SRFI-4 (http://srfi.schemers.org/srfi-4/srfi-4.html). However, the type
names (such as <s8vector>) are a Kawa extension.

Variable<s8vector>
The type of uniform vectors where each element can contain a signed 8-bit
integer. Represented using an array of <byte>.

Variable<u8vector>
The type of uniform vectors where each element can contain an unsigned 8-bit
integer. Represented using an array of <byte>, but each element is treated as
if unsigned.

Variable<s16vector>
The type of uniform vectors where each element can contain a signed 16-bit
integer. Represented using an array of <short>.

Variable<u16vector>
The type of uniform vectors where each element can contain an unsigned 16-bit
integer. Represented using an array of <short>, but each element is treated as
if unsigned.

Variable<s32vector>
The type of uniform vectors where each element can contain a signed 32-bit
integer. Represented using an array of <int>.

Variable<u32vector>
The type of uniform vectors where each element can contain an unsigned 32-bit
integer. Represented using an array of <int>, but each element is treated as if
unsigned.

Variable<s64vector>
The type of uniform vectors where each element can contain a signed 64-bit
integer. Represented using an array of <long>.

Variable<u64vector>
The type of uniform vectors where each element can contain an unsigned 64-bit
integer. Represented using an array of <long>, but each element is treated as
if unsigned.

Chapter 7: Extensions 31

Variable<f32vector>
The type of uniform vectors where each element can contain a 32-bit floating-
point real. Represented using an array of <float>.

Variable<f64vector>
The type of uniform vectors where each element can contain a 64-bit floating-
point real. Represented using an array of <double>.

Functions8vector? value
Functionu8vector? value
Functions16vector? value
Functionu16vector? value
Functions32vector? value
Functionu32vector? value
Functions64vector? value
Functionu64vector? value
Functionf32vector? value
Functionf64vector? value

Return true iff value is a uniform vector of the specified type.

Functionmake-s8vector n [value]
Functionmake-u8vector n [value]
Functionmake-s16vector n [value]
Functionmake-u16vector n [value]
Functionmake-s32vector n [value]
Functionmake-u32vector n [value]
Functionmake-s64vector n [value]
Functionmake-u64vector n [value]
Functionmake-f32vector n [value]
Functionmake-f64vector n [value]

Create a new uniform vector of the specified type, having room for n elements.
Initialize each element to value if it is specified; zero otherwise.

Functions8vector value ...
Functionu8vector value ...
Functions16vector value ..
Functionu16vector value ...
Functions32vector value ...
Functionu32vector value ...
Functions64vector value ...
Functionu64vector value ...
Functionf32vector value ...
Functionf64vector value ...

Create a new uniform vector of the specified type, whose length is the number
of values specified, and initialize it using those values.

Chapter 7: Extensions 32

Functions8vector-length v
Functionu8vector-length v
Functions16vector-length v
Functionu16vector-length v
Functions32vector-length v
Functionu32vector-length v
Functions64vector-length v
Functionu64vector-length v
Functionf32vector-length v
Functionf64vector-length v

Return the length (in number of elements) of the uniform vector v.

Functions8vector-ref v i
Functionu8vector-ref v i
Functions16vector-ref v i
Functionu16vector-ref v i
Functions32vector-ref v i
Functionu32vector-ref v i
Functions64vector-ref v i
Functionu64vector-ref v i
Functionf32vector-ref v i
Functionf64vector-ref v i

Return the element at index i of the uniform vector v.

Functions8vector-set! v i x
Functionu8vector-set! v i x
Functions16vector-set! v i x
Functionu16vector-set! v i x
Functions32vector-set! v i x
Functionu32vector-set! v i x
Functions64vector-set! v i x
Functionu64vector-set! v i x
Functionf32vector-set! v i x
Functionf64vector-set! v i x

Set the element at index i of uniform vector v to the value x, which must be a
number coercible to the appropriate type.

Functions8vector->list v
Functionu8vector->list v
Functions16vector->list v
Functionu16vector->list v
Functions32vector->list v
Functionu32vector->list v
Functions64vector->list v
Functionu64vector->list v
Functionf32vector->list v
Functionf64vector->list v

Convert the uniform vetor v to a list containing the elments of v.

Chapter 7: Extensions 33

Functionlist->s8vector l
Functionlist->u8vector l
Functionlist->s16vector l
Functionlist->u16vector l
Functionlist->s32vector l
Functionlist->u32vector l
Functionlist->s64vector l
Functionlist->u64vector l
Functionlist->f32vector l
Functionlist->f64vector l

Create a uniform vector of the appropriate type, initializing it with the elements
of the list l. The elements of l must be numbers coercible the new vector’s
element type.

7.11.1 Relationship with Java arrays

Each uniform array type is implemented as an underlying Java array, and a length field.
The underlying type is byte[] for <u8vector> or <s8vector>; short[] for <u16vector>
or <u16vector>; int[] for <u32vector> or <s32vector>; long[] for <u64vector> or
<s64vector>; <float[] for <f32vector>; and <double[] for <f32vector>. The length
field allows a uniform array to only use the initial part of the underlying array. (This can
be used to support Common Lisp’s fill pointer feature.) This also allows resizing a uniform
vector. There is no Scheme function for this, but you can use the setSize method:

(invoke some-vector ’setSize 200)

If you have a Java array, you can create a uniform vector sharing with the Java array:
(define arr :: <byte[]> ((primitive-array-new <byte>) 10))
(define vec :: <u8vector> (make <u8vector> arr))

At this point vec uses arr for its underlying storage, so changes to one affect the other.
It vec is re-sized so it needs a larger underlying array, then it will no longer use arr.

7.12 Signalling and recovering from exceptions

Functioncatch key thunk handler
Invoke thunk in the dynamic context of handler for exceptions matching key.
If thunk throws to the symbol key, then handler is invoked this way:

(handler key args ...)

key may be a symbol. The thunk takes no arguments. If thunk returns nor-
mally, that is the return value of catch.
Handler is invoked outside the scope of its own catch. If handler again throws
to the same key, a new handler from further up the call chain is invoked.
If the key is #t, then a throw to any symbol will match this call to catch.

Functionthrow key &rest args ...
Invoke the catch form matching key, passing args to the handler.
If the key is a symbol it will match catches of the same symbol or of #t.
If there is no handler at all, an error is signaled.

Chapter 7: Extensions 34

procedureerror message args ...
Raise an error with key misc-error and a message constructed by displaying
msg and writing args. This normally prints a stack trace, and brings you back to
the top level, or exits kawa if you are not running interactively. This procedure
is part of SRFI-23, and other Scheme implementations.

Functionprimitive-throw exception
Throws the exception, which must be an instance of a sub-class of <java.lang.Throwable>.

Syntaxtry-finally body handler
Evaluate body, and return its result. However, before it returns, evaluate han-
dler. Even if body returns abnormally (by throwing an exception), handler is
evaluated.
(This is implemented just like Java’s try-finally.)

Syntaxtry-catch body handler ...
Evaluate body, in the context of the given handler specifications. Each handler
has the form:

var type exp ...

If an exception is thrown in body, the first handler is selected such that the
thrown exception is an instance of the handler’s type. If no handler is selected,
the exception is propagated through the dynamic execution context until a
matching handler is found. (If no matching handler is found, then an error
message is printed, and the computation terminated.)
Once a handler is selected, the var is bound to the thrown exception, and the
exp in the handler are executed. The result of the try-catch is the result
of body if no exception is thrown, or the value of the last exp in the selected
handler if an exception is thrown.
(This is implemented just like Java’s try-catch.)

Functiondynamic-wind in-guard thunk out-guard
All three arguments must be 0-argument procedures. First calls in-guard, then
thunk, then out-guard. The result of the expression is that of thunk. If thunk
is exited abnormally (by throwing an exception or invoking a continuation),
out-guard is called.
If the continuation of the dynamic-wind is re-entered (which is not yet possible
in Kawa), the in-guard is called again.
This function was added in R5RS.

7.13 Locations

A location is a place where a value can be stored. An lvalue is an expression that refers to
a location. (The name "lvalue" refers to the fact that the left operand of set! is an lvalue.)
The only kind of lvalue in standard Scheme is a variable. Kawa also allows computed
lvalues. These are procedure calls used in "lvalue context", such as the left operand of
set!.

Chapter 7: Extensions 35

You can only use procedures that have an associated setter. In that case, (set! (f arg
...) value) is equivalent to ((setter f) arg ... value) Currently, only a few procedures
have associated setters, and only builtin procedures written in Java can have setters.

For example:

(set! (car x) 10)

is equivalent to:

((setter car) x 10)

which is equivalent to:

(set-car! x 10)

Functionsetter procedure
Gets the "setter procedure" associated with a "getter procedure". Equivalent
to (procedure-property procedure ’setter). By convention, a setter pro-
cedure takes the same parameters as the "getter" procedure, plus an extra
parameter that is the new value to be stored in the location specified by the
parameters. The expectation is that following ((setter proc) args ... value)
then the value of (proc args ...) will be value.

The setter of setter can be used to set the setter property. For example
the Scheme prologue effectively does the following:

(set! (setter vector-set) vector-set!)

Kawa also gives you access to locations as first-class values:

Syntaxlocation lvalue
Returns a location object for the given lvalue. You can get its value (by applying
it, as if it were a procedure), and you can set its value (by using set! on the
application). The lvalue can be a local or global variable, or a procedure call
using a procedure that has a setter.

(define x 100)
(define lx (location x))
(set! (lx) (cons 1 2)) ;; set x to (1 . 2)
(lx) ;; returns (1 . 2)
(define lc (location (car x)))
(set! (lc) (+ 10 (lc)))
;; x is now (11 . 2)

Syntaxdefine-alias variable lvalue
Define variable as an alias for lvalue. In other words, makes it so that (location
variable) is equivalent to (location lvalue). This works both top-level and
inside a function.

Some people might find it helpful to think of a location as a settable thunk. Others may
find it useful to think of the location syntax as similar to the C ‘&’ operator; for the ‘*’
indirection operator, Kawa uses procedure application.

Chapter 7: Extensions 36

7.14 Eval and Environments

Functioneval expression [environment]
eval evaluates expression in the environment indicated by environment.
The default for environment is the result of (interaction-environment).

Functionnull-environment version
This procedure returns an environment that contains no variable bindings, but
contains (syntactic) bindings for all the syntactic keywords.
The effect of assigning to a variable in this environment (such as let) is unde-
fined.

Functionscheme-report-environment version
The version must be an exact non-negative inetger corresponding to a version of
one of the Revisedversion Reports on Scheme. The procedure returns an envi-
ronment that contains exactly the set of bindings specified in the corresponding
report.
This implementation supports version that is 4 or 5.
The effect of assigning to a variable in this environment (such as car) is unde-
fined.

Functioninteraction-environment
This procedure return an environment that contains implementation-defined
bindings, as well as top-level user bindings.

Functionenvironment-bound? environment symbol
Return true #t if there is a binding for symbol in environment; otherwise returns
#f.

Syntaxfluid-let ((variable init) ...) body ...
Evaluate the init expressions. Then modify the dynamic bindings for the vari-
ables to the values of the init expressions, and evaluate the body expressions.
Return the result of the last expression in body. Before returning, restore
the original bindings. The temporary bindings are only visible in the current
thread, and its descendent threads.

Functionbase-uri [node]
If node is specified, returns the base-URI property of the node. If the node
does not have the base-URI property, returns #f. (The XQuery version returns
the empty sequence in that case.)
In the zero-argument case, returns the "base URI" of the current context. By
default the base URI is the current working directory (as a URL). While a source
file is loaded, the base URI is temporarily set to the URL of the document.

Functionload path
The path can be an (absolute) URL or a filename.

Functionload-relative path
Same as load, except that path is a URI that is relative to the context’s current
base URI.

Chapter 7: Extensions 37

7.15 Debugging

Syntaxtrace procedure
Cause procedure to be "traced", that is debugging output will be written to
the standard error port every time procedure is called, with the parameters and
return value.

Syntaxuntrace procedure
Turn off tracing (debugging output) of procedure.

7.16 Threads

There is a very preliminary interface to create parallel threads. The interface is similar
to the standard delay/force, where a thread is basically the same as a promise, except
that evaluation may be in parallel.

So far, only modest effort has been made into making Kawa thread-safe.

Syntaxfuture expression
Creates a new thread that evaluates expression.

Functionforce thread
The standard force function has generalized to also work on threads. If waits
for the thread’s expression to finish executing, and returns the result.

Functionsleep time
Suspends the current thread for the specified time. The time can be either a
pure number (in secords), or a quantity whose unit is a time unit (such as 10s).

7.17 Processes

Functionmake-process command envp
Creates a <java.lang.Process> object, using the specified command and
envp. The command is converted to an array of Java strings (that is an ob-
ject that has type <java.lang.String[]>. It can be a Scheme vector or list
(whose elements should be Java strings or Scheme strings); a Java array of Java
strings; or a Scheme string. In the latter case, the command is converted using
command-parse. The envp is process environment; it should be either a Java
array of Java strings, or the special #!null value.

Functionsystem command
Runs the specified command, and waits for it to finish. Returns the return
code from the command. The return code is an integer, where 0 conventionally
means successful completion. The command can be any of the types handled
by make-process.

Chapter 7: Extensions 38

Variablecommand-parse
The value of this variable should be a one-argument procedure. It is used to
convert a command from a Scheme string to a Java array of the constituent
"words". The default binding, on Unix-like systems, returns a new command to
invoke "/bin/sh" "-c" concatenated with the command string; on non-Unix-
systems, it is bound to tokenize-string-to-string-array.

Functiontokenize-string-to-string-array command
Uses a java.util.StringTokenizer to parse the command string into an array
of words. This splits the command using spaces to delimit words; there is no
special processing for quotes or other special characters. (This is the same as
what java.lang.Runtime.exec(String) does.)

7.18 Miscellaneous

Functionscheme-implementation-version
Returns the Kawa version number as a string.

Variablecommand-line-arguments
Any command-line arguments (following flags processed by Kawa itself) are
assigned to the global variable ‘command-line-arguments’, which is a vector
of strings.

Variablehome-directory
A string containing the home directory of the user.

Functionexit [code]
Exits the Kawa interpreter, and ends the Java session. The integer value code
is returned to the operating system. If code is not specified, zero is returned,
indicating normal (non-error) termination.

Functionscheme-window [shared]
Create a read-eval-print-loop in a new top-level window. If shared is true, it
uses the same environment as the current (interaction-environment); if not
(the default), a new top-level environment is created.
You can create multiple top-level window that can co-exist. They run in sepa-
rate threads.

Syntaxwhen condition form...
If condition is true, evaluate each form in order, returning the value of the last
one.

Syntaxunless condition form...
If condition is false, evaluate each form in order, returning the value of the last
one.

Functionvector-append arg...
Creates a new vector, containing the elements from all the args appended to-
gether. Each arg may be a vector or a list.

Chapter 8: Input, output, and file handling 39

Functioninstance? value type
Returns #t iff value is an instance of type type. (Undefined if type is a primitive
type, such as <int>.)

Functionas type value
Converts or coerces value to a value of type type. Throws an exception if that
cannot be done. Not supported for type to be a primitive type such as <int>.

Syntaxsynchronized object form ...
Synchronize on the given object. (This means getting an exclusive lock on the
object, by acquiring its monitor.) Then execute the forms while holding the
lock. When the forms finish (normally or abnormally by throwing an exception),
the lock is released. Returns the result of the last form. Equivalent to the Java
synchronized statement, except that it may return a result.

8 Input, output, and file handling

Kawa has a number of useful tools for controlling input and output:

A programmable reader.

A powerful pretty-printer.

The --output-format (or --format) command-line switch can be used to override the
default format for how values are printed on the standard output. This format is used for
values printed by the read-eval-print interactive interface. It is also used to control how
values are printed when Kawa evaluates a file named on the command line (using the -f
flag or a just a script name). (It also effects applications compiled with the --main flag.)
It currently effects how values are printed by a load, though that may change.

The default format depends on the current programming language. For Scheme, the
default is --scheme for read-eval-print interaction, and --ignore for files that are loaded.

The formats currently supported include the following:

‘scheme’ Values are printed in a format matching the Scheme programming language, as
if using display. "Groups" or "elements" are written as lists.

‘readable-scheme’
Like scheme, as if using write: Values are generally printed in a way that they
can be read back by a Scheme reader. For example, strings have quotation
marks, and character values are written like ‘#\A’.

‘elisp’ Values are printed in a format matching the Emacs Lisp programming language.
Mostly the same as scheme.

‘readable-elisp’
Like elisp, but values are generally printed in a way that they can be read
back by an Emacs Lisp reader. For example, strings have quotation marks, and
character values are written like ‘?A’.

Chapter 8: Input, output, and file handling 40

‘clisp’
‘commonlisp’

Values are printed in a format matching the Common Lisp programming lan-
guage, as if written by princ. Mostly the same as scheme.

‘readable-clisp’
‘readable-commonlisp’

Like clisp, but as if written by prin1: values are generally printed in a way
that they can be read back by a Common Lisp reader. For example, strings
have quotation marks, and character values are written like ‘#\A’.

‘xml’ Values are printed in XML format. "Groups" or "elements" are written as
using xml element syntax. Plain characters (such as ‘<’) are escaped (such as
‘<’).

‘xhtml’ Same as xml, but follows the xhtml compatibility guidelines.

‘html’ Values are printed in HTML format. Mostly same as xml format, but certain
element without body, are written without a closing tag. For example
is written without , which would be illegal for html, but required for
xml. Plain characters (such as ‘<’) are not escaped inside <script> or <style>
elements.

‘cgi’ The output should be a follow the CGI standards. I.e. assume that this script
is invoked by a web server as a CGI script/program, and that the output should
start with some response header, followed by the actual response data. To gener-
ate the response headers, use the response-header function. If the Content-
type response header has not been specified, and it is required by the CGI
standard, Kawa will attempt to infer an appropriate Content-ty[e depending
on the following value.

‘ignore’ Top-level values are ignored, instead of printed.

8.1 File System Interface

Functionfile-exists? filename
Returns true iff the file named filename actually exists.

Functionfile-directory? filename
Returns true iff the file named filename actually exists and is a directory.

Functionfile-readable? filename
Returns true iff the file named filename actually exists and can be read from.

Functionfile-writable? filename
Returns true iff the file named filename actually exists and can be writen to.
(Undefined if the filename does not exist, but the file can be created in the
directory.)

Functiondelete-file filename
Delete the file named filename.

Chapter 8: Input, output, and file handling 41

Functionrename-file oldname newname
Renames the file named oldname to newname.

Functioncopy-file oldname newname-from path-to
Copy the file named oldname to newname. The return value is unspecified.

Functioncreate-directory dirname
Create a new directory named dirname. Unspecified what happens on error
(such as exiting file with the same name). (Currently returns #f on error, but
may change to be more compatible with scsh.)

Functionsystem-tmpdir
Return the name of the default directory for temporary files.

Functionmake-temporary-file [format]
Return a file with a name that does not match any existing file. Use format
(which defaults to "kawa~d.tmp") to generate a unique filename in (system-
tmpdir). The current implementation is not safe from race conditions; this will
be fixed in a future release (using Java2 features).

8.2 Ports

Functioncurrent-error-port
Return the port to which errors and warnings should be sent (the standard
error in Unix and C terminology).

Functionread-line [port [handle-newline]]
Reads a line of input from port. The handle-newline parameter determines what
is done with terminating end-of-line delimiter. The default, ’trim, ignores the
delimiter; ’peek leaves the delimiter in the input stream; ’concat appends the
delimiter to the returned value; and ’split returns the delimiter as a second
value. You can use the last three options to tell if the string was terminated by
end-or-line or by end-of-file.

Functionopen-input-string string
Takes a string and returns an input port that delivers characters from the
string. The port can be closed by close-input-port, though its storage will
be reclaimed by the garbage collector if it becomes inaccessible.

(define p
(open-input-string "(a . (b c . ())) 34"))

(input-port? p) --> #t
(read p) --> (a b c)
(read p) --> 34
(eof-object? (peek-char p)) --> #t

Functionopen-output-string
Returns an output port that will accumulate characters for retrieval by get-
output-string. The port can be closed by the procedure close-output-port,

Chapter 8: Input, output, and file handling 42

though its storage will be reclaimed by the garbage collector if it becomes
inaccessible.

(let ((q (open-output-string))
(x ’(a b c)))
(write (car x) q)
(write (cdr x) q)
(get-output-string q)) --> "a(b c)"

Functionget-output-string output-port
Given an output port created by open-output-string, returns a string con-
sisting of the characters that have been output to the port so far.

Functioncall-with-input-string string proc
Create an input port that gets its data from string, call proc with that port as
its one argument, and return the result from the call of proc

Functioncall-with-output-string proc
Create an output port that writes its data to a string, and call proc with that
port as its one argument. Return a string consisting of the data written to the
port.

Functionforce-output [port]
Forces any pending output on port to be delivered to the output device and
returns an unspecified value. If the port argument is omitted it defaults to the
value returned by (current-output-port).

An interactive input port has a prompt procedure associated with it. The prompt
procedure is called before a new line is read. It is passed the port as an argument, and
returns a string, which gets printed as a prompt.

Functioninput-port-prompter port
Get the prompt procedure associated with port.

Functionset-input-port-prompter! port prompter
Set the prompt procedure associated with port to prompter, which must be a
one-argument procedure taking an input port, and returning a string.

Functiondefault-prompter port
The default prompt procedure. It returns "#|kawa:L|# ", where L is the cur-
rent line number of port. When reading a continuation line, the result is "#|C--
-:L|# ", where C is the character returned by (input-port-read-state port).
The prompt has the form of a comment to make it easier to cut-and-paste.

Functionport-column input-port
Functionport-line input-port

Return the current column number or line number of input-port, using the
current input port if none is specified. If the number is unknown, the result is
#f. Otherwise, the result is a 0-origin integer - i.e. the first character of the
first line is line 0, column 0. (However, when you display a file position, for

Chapter 8: Input, output, and file handling 43

example in an error message, we recommend you add 1 to get 1-origin integers.
This is because lines and column numbers traditionally start with 1, and that
is what non-programmers will find most natural.)

Functionset-port-line! port line
Set (0-origin) line number of the current line of port to num.

Functioninput-port-line-number port
Get the line number of the current line of port, which must be a (non-binary)
input port. The initial line is line 1. Deprecated; replaced by (+ 1 (port-line
port)).

Functionset-input-port-line-number! port num
Set line number of the current line of port to num. Deprecated; replaced by
(set-port-line! port (- num 1)).

Functioninput-port-column-number port
Get the column number of the current line of port, which must be a (non-
binary) input port. The initial column is column 1. Deprecated; replaced by
(+ 1 (port-column port)).

Functioninput-port-read-state port
Returns a character indicating the current read state of the port. Returns
#\Return if not current doing a read, #\" if reading a string; #\| if reading
a comment; #\(if inside a list; and #\Space when otherwise in a read. The
result is intended for use by prompt prcedures, and is not necessarily correct
except when reading a new-line.

Variablesymbol-read-case
A symbol that controls how read handles letters when reading a symbol. If the
first letter is ‘U’, then letters in symbols are upper-cased. If the first letter is
‘D’ or ‘L’, then letters in symbols are down-cased. If the first letter is ‘I’, then
the case of letters in symbols is inverted. Otherwise (the default), the letter is
not changed. (Letters following a ‘\’ are always unchanged.)

Variableport-char-encoding
Controls how bytes in external files are converted to/from internal Unicode
characters. Can be either a symbol or a boolean. If port-char-encoding is #f,
the file is assumed to be a binary file and no conversion is done. Otherwise, the
file is a text file. The default is #t, which uses a locale-dependent conversion. If
port-char-encoding is a symbol, it must be the name of a character encoding
known to Java. For all text files (that is if port-char-encoding is not #f), on
input a #\Return character or a #\Return followed by #\Newline are converted
into plain #\Newline.
This variable is checked when the file is opened; not when actually reading
or writing. Here is an example of how you can safely change the encoding
temporarily:

(define (open-binary-input-file name)
(fluid-let ((port-char-encoding #f)) (open-input-file name)))

Chapter 8: Input, output, and file handling 44

8.3 Formatted Output (Common-Lisp-style)

Functionformat destination fmt . arguments
An almost complete implementation of Common LISP format description ac-
cording to the CL reference book Common LISP from Guy L. Steele, Digital
Press. Backward compatible to most of the available Scheme format implemen-
tations.
Returns #t, #f or a string; has side effect of printing according to fmt. If desti-
nation is #t, the output is to the current output port and #!void is returned. If
destination is #f, a formatted string is returned as the result of the call. If des-
tination is a string, destination is regarded as the format string; fmt is then the
first argument and the output is returned as a string. If destination is a num-
ber, the output is to the current error port if available by the implementation.
Otherwise destination must be an output port and #!void is returned.
fmt must be a string or an instance of gnu.text.MessageFormat or java.text.MessageFormat.
If fmt is a string, it is parsed as if by parse-format.

Functionparse-format format-string
Parses format-string, which is a string of the form of a Common LISP format
description. Returns an instance of gnu.text.ReportFormat, which can be
passed to the format function.

A format string passed to format or parse-format consists of format directives (that
start with ‘~’), and regular characters (that are written directly to the destination). Most
of the Common Lisp (and Slib) format directives are implemented. Neither justification,
nor pretty-printing are supported yet.

Plus of course, we need documentation for format!

8.3.1 Implemented CL Format Control Directives

Documentation syntax: Uppercase characters represent the corresponding control direc-
tive characters. Lowercase characters represent control directive parameter descriptions.

~A Any (print as display does).

~@A left pad.

~mincol,colinc,minpad,padcharA
full padding.

~S S-expression (print as write does).

~@S left pad.

~mincol,colinc,minpad,padcharS
full padding.

~C Character.

~@C prints a character as the reader can understand it (i.e. #\ prefixing).

~:C prints a character as emacs does (eg. ^C for ASCII 03).

Chapter 8: Input, output, and file handling 45

8.3.2 Formatting Integers

~D Decimal.

~@D print number sign always.

~:D print comma separated.

~mincol,padchar,commachar,commawidthD
padding.

~X Hexadecimal.

~@X print number sign always.

~:X print comma separated.

~mincol,padchar,commachar,commawidthX
padding.

~O Octal.

~@O print number sign always.

~:O print comma separated.

~mincol,padchar,commachar,commawidthO
padding.

~B Binary.

~@B print number sign always.

~:B print comma separated.

~mincol,padchar,commachar,commawidthB
padding.

~nR Radix n.

~n,mincol,padchar,commachar,commawidthR
padding.

~@R print a number as a Roman numeral.

~:@R print a number as an “old fashioned” Roman numeral.

~:R print a number as an ordinal English number.

~R print a number as a cardinal English number.

~P Plural.

~@P prints y and ies.

~:P as ~P but jumps 1 argument backward.

~:@P as ~@P but jumps 1 argument backward.

commawidth is the number of characters between two comma characters.

Chapter 8: Input, output, and file handling 46

8.3.3 Formatting floating-point (real) numbers

~F Fixed-format floating-point (prints a flonum like mmm.nnn).

~width,digits,scale,overflowchar,padcharF

~@F If the number is positive a plus sign is printed.

~E Exponential floating-point (prints a flonum like mmm.nnnEee)

~width,digits,exponentdigits,scale,overflowchar,padchar,exponentcharE

~@E If the number is positive a plus sign is printed.

~G General floating-point (prints a flonum either fixed or exponential).

~width,digits,exponentdigits,scale,overflowchar,padchar,exponentcharG

~@G If the number is positive a plus sign is printed.

A slight difference from Common Lisp: If the number is printed in fixed form
and the fraction is zero, then a zero digit is printed for the fraction, if allowed
by the width and digits is unspecified.

~$ Dollars floating-point (prints a flonum in fixed with signs separated).

~digits,scale,width,padchar$

~@$ If the number is positive a plus sign is printed.

~:@$ A sign is always printed and appears before the padding.

~:$ The sign appears before the padding.

8.3.4 Miscellaneous formatting operators

~% Newline.

~n% print n newlines.

~& print newline if not at the beginning of the output line.

~n& prints ~& and then n-1 newlines.

~| Page Separator.

~n| print n page separators.

~~ Tilde.

~n~ print n tildes.

~<newline>
Continuation Line.

~:<newline>
newline is ignored, white space left.

~@<newline>
newline is left, white space ignored.

Chapter 8: Input, output, and file handling 47

~T Tabulation.

~@T relative tabulation.

~colnum,colincT
full tabulation.

~? Indirection (expects indirect arguments as a list).

~@? extracts indirect arguments from format arguments.

~(str~) Case conversion (converts by string-downcase).

~:(str~) converts by string-capitalize.

~@(str~) converts by string-capitalize-first.

~:@(str~) converts by string-upcase.

~* Argument Jumping (jumps 1 argument forward).

~n* jumps n arguments forward.

~:* jumps 1 argument backward.

~n:* jumps n arguments backward.

~@* jumps to the 0th argument.

~n@* jumps to the nth argument (beginning from 0)

~[str0~;str1~;...~;strn~]
Conditional Expression (numerical clause conditional).

~n[take argument from n.

~@[true test conditional.

~:[if-else-then conditional.

~; clause separator.

~:; default clause follows.

~{str~} Iteration (args come from the next argument (a list)).

~n{ at most n iterations.

~:{ args from next arg (a list of lists).

~@{ args from the rest of arguments.

~:@{ args from the rest args (lists).

~^ Up and out.

~n^ aborts if n = 0

~n,m^ aborts if n = m

~n,m,k^ aborts if n <= m <= k

Chapter 9: Types 48

8.3.5 Not Implemented CL Format Control Directives

~:A print #f as an empty list (see below).

~:S print #f as an empty list (see below).

~<~> Justification.

~:^

8.3.5.1 Extended, Replaced and Additional Control Directives

These are not necesasrily implemented in Kawa!

~I print a R4RS complex number as ~F~@Fi with passed parameters for ~F.

~Y Pretty print formatting of an argument for scheme code lists.

~K Same as ~?.

~! Flushes the output if format destination is a port.

~_ Print a #\space character

~n_ print n #\space characters.

~nC Takes n as an integer representation for a character. No arguments are con-
sumed. n is converted to a character by integer->char. n must be a positive
decimal number.

~:S Print out readproof. Prints out internal objects represented as #<...> as strings
"#<...>" so that the format output can always be processed by read.

~:A Print out readproof. Prints out internal objects represented as #<...> as strings
"#<...>" so that the format output can always be processed by read.

~F, ~E, ~G, ~$
may also print number strings, i.e. passing a number as a string and format it
accordingly.

9 Types

A type is a set of values, plus an associated set of operations valid on those values. Types
are useful for catching errors ("type-checking"), documenting the programmer’s intent, and
to help the compiler generate better code. Types in some languages (such as C) appear
in programs, but do not exist at run-time. In such languages, all type-checking is done at
compile-time. Other languages (such as standard Scheme) do not have types as such, but
they have predicates, which allow you to check if a value is a member of certain sets; also,
the primitive functions will check at run-time if the arguments are members of the allowed
sets. Other languages, including Java and Common Lisp, provide a combination: Types
may be used as specifiers to guide the compiler, but also exist as actual run-time values. In
Java, for each class, there is a corresponding java.lang.Class run-time object, as well as
an associated type (the set of values of that class, plus its sub-classes, plus null).

Chapter 9: Types 49

Kawa, like Java, has first-class types, that is types exist as objects you can pass around at
run-time. For each Java type, there is a corresponding Kawa type (but not necessarily vice
versa). It would be nice if we could represent run-time type values using java.lang.Class
objects, but unfortunately that does not work very well. One reason is that we need to be
able to refer to types and classes that do not exist yet, because we are in the processing of
compiling them. Another reason is that we want to be able to distinuish between different
types that are implemented using the same Java class.

Various Kawa constructs require or allow a type to be specified. Those specifications
consist of type expressions, which is evaluated to yield a type value. The current Kawa
compiler is rather simple-minded, and in many places only allows simple types that the
compiler can evaluate at compile-time. More specifically, it only allows simple type names
that map to primitive Java types or java classes.

9.1 Standard Types

These types are bound to identifiers having the form <TYPENAME>. (This syntax and
most of the names are as in RScheme.)

To find which Java classes these types map into, look in kawa/standard/Scheme.java.

Note that the value of these variables are instances of gnu.bytecode.Type, not (as you
might at first expect) java.lang.Class.

Variable<object>
An arbitrary Scheme value - and hence an arbitrary Java object.

Variable<number>
The type of Scheme numbers.

Variable<quantity>
The type of quantities optionally with units. This is a sub-type of <number>.

Variable<complex>
The type of complex numbers. This is a sub-type of <quantity>.

Variable<real>
The type of real numbers. This is a sub-type of <complex>.

Variable<rational>
The type of exact rationl numbers. This is a sub-type of <real>.

Variable<integer>
The type of exact Scheme integers. This is a sub-type of <rational>.

Variable<symbol>
The type of Scheme symbols.

Variable<keyword>
The type of keyword values. See Section 7.4 [Keywords], page 20.

Chapter 9: Types 50

Variable<list>
The type of Scheme lists (pure and impure, including the empty list).

Variable<pair>
The type of Scheme pairs. This is a sub-type of <list>.

Variable<string>
The type of (mutable) Scheme strings. This is not the same as (non-mutable)
Java strings (which happen to be the same as <symbol>).

Variable<character>
The type of Scheme character values. This is a sub-type of <object>, in contrast
to type <char>, which is the primitive Java char type.

Variable<vector>
The type of Scheme vectors.

Variable<procedure>
The type of Scheme procedures.

Variable<input-port>
The type of Scheme input ports.

Variable<output-port>
The type of Scheme output ports.

Variable<String>
This type name is a special case. It specifies the class <java.lang.String>
(just as <symbol> does). However, coercing a value to <String> is done by
invoking the toString method on the value to be coerced. Thus it "works" for
all objects. It also works for #!null.

When Scheme code invokes a Java methods any parameter whose type is
java.lang.String is converted as if it was decalred as a <String>.

More will be added later.

A type specifier can also be one of the primitive Java types. The numeric types <long>,
<int>, <short>, <byte>, <float>, and <double> are converted from the corresponding
Scheme number classes. Similarly, <char> can be converted to and from Scheme charac-
ters. The type boolean matches any object, and the result is false if and only if the
actual argument is #f. (The value #f is identical to Boolean.FALSE, and #t is identical to
Boolean.TRUE.) The return type <void> indicates that no value is returned.

A type specifier can also be a fully-qualified Java class name (for example <java.lang.StringBuffer>).
In that case, the actual argument is cast at run time to the named class. Also, <java.lang.StringBuffer[]>
represents an array of references to java.lang.StringBuffer objects.

Chapter 10: Object, Classes and Modules 51

9.2 Declaring Types of Variables

Syntaxlet ((name [:: type] init) ...) body
Declare new locals variables with the given name, initial value init, and optional
type specification type. If type is specified, then the expression init is evaluated,
the result coerced to type, and then assigned to the variable. If type is not
specified, it defaults to <object>.

Syntaxlet* ((name [:: type] init) ...) body

Syntaxletrec ((name [:: type] init) ...) body

Syntaxdefine [:: type] value

See also define-private, and define-constant.

10 Object, Classes and Modules

Kawa provides various ways to define, create, and access Java objects. Here are the
currently supported features.

The Kawa module system is based on the features of the Java class system.

Syntaxthis
Returns the "this object" - the current instance of the current class. The current
implementation is incomplete, not robust, and not well defined. However, it will
have to do for now. Note: "this" is a macro, not a variable, so you have to
write it using parentheses: ‘(this)’. A planned extension will allow an optional
class specifier (needed for nested clases).

The define-record-type form can be used for creating new data types, called record
types. A predicate, constructor, and field accessors and modifiers are defined for each record
type. The define-record-type feature is specified by SRFI-9 (http://srfi.schemers.org/srfi-9/srfi-9.html),
which is implemented by many modern Scheme implementations.

Syntaxdefine-record-type type-name (constructor-name field-tag ...)
predicate-name (field-tag accessor-name [modifier-name]) ...

The form define-record-type is generative: each use creates a new record
type that is distinct from all existing types, including other record types and
Scheme’s predefined types. Record-type definitions may only occur at top-
level (there are two possible semantics for ‘internal’ record-type definitions,
generative and nongenerative, and no consensus as to which is better).
An instance of define-record-type is equivalent to the following definitions:
• The type-name is bound to a representation of the record type itself.
• The constructor-name is bound to a procedure that takes as many ar-

guments as there are field-tags in the (constructor-name ...) subform
and returns a new type-name record. Fields whose tags are listed with
constructor-name have the corresponding argument as their initial value.
The initial values of all other fields are unspecified.

Chapter 10: Object, Classes and Modules 52

• The predicate-name is a predicate that returns #t when given a value
returned by constructor-name and #f for everything else.

• Each accessor-name is a procedure that takes a record of type type-name
and returns the current value of the corresponding field. It is an error to
pass an accessor a value which is not a record of the appropriate type.

• Each modifier-name is a procedure that takes a record of type type-name
and a value which becomes the new value of the corresponding field. The
result (in Kawa) is the empty value #!void. It is an error to pass a modifier
a first argument which is not a record of the appropriate type.

Set!ing the value of any of these identifiers has no effect on the behavior of any
of their original values.

Here is an example of how you can define a record type named pare with two fields x
and y:

(define-record-type pare
(kons x y)
pare?
(x kar set-kar!)
(y kdr))

The above defines kons to be a constructor, kar and kdr to be accessors, set-kar! to
be a modifier, and pare? to be a predicate for pares.

(pare? (kons 1 2)) --> #t
(pare? (cons 1 2)) --> #f
(kar (kons 1 2)) --> 1
(kdr (kons 1 2)) --> 2
(let ((k (kons 1 2)))
(set-kar! k 3)
(kar k)) --> 3

The Kawa compiler creates a new Java class with a name derived from the type-name.
If the type-name is valid Java class name, that becomes the name of the Java class. If the
type-name has the form <name> (for example <pare>), then name is used, if possible, for
the Java class name. Otherwise, the name of the Java class is derived by "mangling" the
type-name. In any case, the package is the same as that of the surrounding module.

Kawa generates efficient code for the predicate-name, accessor-name, and modifier-name
functions. The constructor-name currently compiles into code using run-time reflection,
but hopefully that will get fixed.

10.1 Creating New Record Types On-the-fly

Calling the make-record-type procedure creates a new record data type at run-time,
without any compile-time support. It is primarily provided for compatibility; in most cases
it is better to use the define-record-type form (see 〈undefined〉 [Record types], page 〈un-
defined〉).

Chapter 10: Object, Classes and Modules 53

Functionmake-record-type type-name field-names
Returns a record-type descriptor, a value representing a new data type disjoint
from all others. The type-name argument must be a string, but is only used
for debugging purposes (such as the printed representation of a record of the
new type). The field-names argument is a list of symbols naming the fields of
a record of the new type. It is an error if the list contains any duplicates.

Functionrecord-constructor rtd [field-names]
Returns a procedure for constructing new members of the type represented by
rtd. The returned procedure accepts exactly as many arguments as there are
symbols in the given list, field-names; these are used, in order, as the initial
values of those fields in a new record, which is returned by the constructor
procedure. The values of any fields not named in that list are unspecified.
The field-names argument defaults to the list of field names in the call to
make-record-type that created the type represented by rtd; if the field-names
argument is provided, it is an error if it contains any duplicates or any symbols
not in the default list.

Functionrecord-predicate rtd
Returns a procedure for testing membership in the type represented by rtd.
The returned procedure accepts exactly one argument and returns a true value
if the argument is a member of the indicated record type; it returns a false
value otherwise.

Functionrecord-accessor rtd field-name
Returns a procedure for reading the value of a particular field of a member of the
type represented by rtd. The returned procedure accepts exactly one argument
which must be a record of the appropriate type; it returns the current value of
the field named by the symbol field-name in that record. The symbol field-name
must be a member of the list of field-names in the call to make-record-type
that created the type represented by rtd.

Functionrecord-modifier rtd field-name
Returns a procedure for writing the value of a particular field of a member
of the type represented by rtd. The returned procedure accepts exactly two
arguments: first, a record of the appropriate type, and second, an arbitrary
Scheme value; it modifies the field named by the symbol field-name in that
record to contain the given value. The returned value of the modifier procedure
is unspecified. The symbol field-name must be a member of the list of field-
names in the call to make-record-type that created the type represented by
rtd.

Functionrecord? obj
Returns a true value if obj is a record of any type and a false value otherwise.

Functionrecord-type-descriptor record
Returns a record-type descriptor representing the type of the given record. That
is, for example, if the returned descriptor were passed to record-predicate,
the resulting predicate would return a true value when passed the given record.

Chapter 10: Object, Classes and Modules 54

Functionrecord-type-name rtd
Returns the type-name associated with the type represented by rtd. The re-
turned value is eqv? to the type-name argument given in the call to make-
record-type that created the type represented by rtd.

Functionrecord-type-field-names rtd
Returns a list of the symbols naming the fields in members of the type repre-
sented by rtd. The returned value is equal? to the field-names argument given
in the call to make-record-type that created the type represented by rtd.

Records are extensions of the class Record. These procedures use the Java 1.1 reflection
facility.

10.2 Mapping Scheme names to Java names

Programs use "names" to refer to various values and procedures. The definition of
what is a "name" is different in different programming languages. A name in Scheme (and
other Lisp-like languages) can in principle contain any character (if using a suitable quoting
convention), but typically names consist of "words" (one or more letters) separated by
hyphens, such as ‘make-temporary-file’. Digits and some special symbols are also used.
Standard Scheme is case-insensitive; this means that the names ‘loop’, ‘Loop’, and ‘LOOP’
are all the same name. Kawa is by default case-sensitive, but we recommend that you avoid
using upper-case letters as a general rule.

The Java language and the Java virtual machine uses names for classes, variables, fields
and methods. These names can contain upper- and lower-case letters, digits, and the special
symbols ‘_’ and ‘$’.

Given a name in a Scheme program, Kawa needs to map that name into a valid Java
name. A typical Scheme name such as ‘make-temporary-file’ is not a valid Java name.
The convention for Java names is to use "mixed-case" words, such as ‘makeTemporaryFile’.
So Kawa will translate a Scheme-style name into a Java-style name. The basic rule is simple:
Hyphens are dropped, and a letter that follows a hyphen is translated to its upper-case
(actually "title-case") equivalent. Otherwise, letters are translated as is.

Some special characters are handled specially. A final ‘?’ is replaced by an initial ‘is’,
with the following letter converted to titlecase. Thus ‘number?’ is converted to ‘isNumber’
(which fits with Java conventions), and ‘file-exists?’ is converted to ‘isFileExists’
(which doesn’t really). The pair ‘->’ is translated to ‘To’. For example ‘list->string’
is translated to ‘listTostring’.

Some symbols are mapped to a mnemonic sequence, starting with a dollar-sign, followed
by a two-character abbreviation. For example, the less-than symbol ‘<’ is mangled as ‘$Ls’.
See the source code to the mangleName method in the gnu.expr.Compilation class for
the full list. Characters that do not have a mnemonic abbreviation are mangled as ‘$’
followed by a four-hex-digit unicode value. For example ‘Tamil vowel sign ai’ is mangled
as ‘$0bc8’.

Note that this mapping may map different Scheme names to the same Java name. For
example ‘string?’, ‘String?’, ‘is-string’, ‘is-String’, and ‘isString’ are all mapped
to the same Java identifier ‘isString’. Code that uses such "Java-clashing" names is not

Chapter 10: Object, Classes and Modules 55

supported. There is very partial support for renaming names in the case of a clash, and
there may be better support in the future. However, some of the nice features of Kawa
depend on being able to map Scheme name to Java names naturally, so we urge you to
not write code that "mixes" naming conventions by using (say) the names ‘open-file’ and
‘openFile’ to name two different objects.

The above mangling is used to generate Java method names. Each top-level definition
is also mapped to a Java field. The name of this field is also mangled, but using a mostly
reversible mapping: The Scheme function ‘file-exists?’ is mapped to the method name
‘file$Mnexists$Qu’. Because ‘$’ is used to encode special characters, you should avoid
using it in names in your source file.

10.3 Allocating objects

Functionmake type args ...
Constructs a new object instance of the specified type, which must be either a
java.lang.Class or a <gnu.bytecode.ClassType>.
The args ... are passed to the constructor of the class type. If there is no
applicable constructor, and the args ... consist of a set of (keyword,value)-
pairs, then the default constructor is called, and each (keyword,value)-pair is
used to set the correspdong slot of the result, as if by: (slot-set! result
keyword value).
For example, the following are all equivalent:

(set! p (make <java.awt.Point> 3 4))

(set! p (make <java.awt.Point> y: 4 x: 3))

(set! p (make <java.awt.Point>))
(slot-set! p ’x 3)
(set! (slot-ref p ’y) 4)

10.4 Calling Java methods from Scheme

You can call a Java method as if it were a Scheme procedure using various mechanisms.
The most convenient way to do it is to use define-namespace to define an alias for a Java
class:

(define-namespace Int32 "class:java.lang.Integer")

In this example the name Int32 is a namespace alias for the namespace whose full name is
"class:java.lang.Integer". The full name should be the 6 characters "class:" followed
by the fully-qualified name of a Java class. You can name a method using a qualified name
containing a colon. The part of the name before the colon is a namespace alias (in this case
Int32), and the part of the name after the colon is the method name. For example:

(Int32:toHexString 255) => ff

This invokes the static method toHexString in the Java class java.lang.Integer,
passing it the argument 255, and returning the Java String "ff". (Note this is not the
same as a Scheme string!)

Chapter 10: Object, Classes and Modules 56

You can use the method name new to construct new objects:

(Int32:new ’|255|)

This is equivalent to the Java expression new Integer("255"). You can also write:

(Int32:new "255")

Kawa is smart enough to convert the Kawa string to a Java String.

You can invoke non-static methods the same way. In that case the first argument is the
receiver or this argument.

(Int32:toString (Int32:new "00255"))

This evaluates to the Java String "255".

As a shorthand, you can use the name of a Java class instead of a namespace alias:

(java.lang.Integer:toHexString 255)
(java.lang.Object:toString some-value)

If Kawa sees a qualified name with a prefix that is not defined and that matches the
name of an existing class, then Kawa will automaticaly treat the prefix as a nickname
for namespace uri like class:java.lang.Integer. Both conditions should be true at both
compile-time and run-time. However, using an explicit define-namespace is recommended.

If you prefer, you can instead use the following functions. (There is also an older depre-
cated lower-level interface (see Section 11.3 [Low-level Method invocation], page 67.)

Functioninvoke-static class name args ...
The class can be a <java.lang.Class>, a <gnu.bytecode.ClassType>, or a
<symbol> or <string> that names a Java class. The name can be <symbol>
or <string> that names one or more methods in the Java class. The name is
"mangled" (see Section 10.2 [Mangling], page 54) into a valid Java name.

Any public methods (static or instance) in the specified class (or its super-
classes) that match "name" or "name$V" collectively form a generic procedure.
When the procedure is applied to the argument list, the most specific applicable
method is chosen depending on the argument list; that method is then called
with the given arguments. Iff the method is an instance method, the first actual
argument is used as the this argument. If there are no applicable methods (or
no methods at all!), or there is no "best" method, WrongType is thrown.

("name$V" is used for procedures with #!rest or keyword args; the last ar-
gument must be an array type; all the "extra" arguments must be compatible
with the type of the array elements.)

An example (derived from the Skij FAQ):

(invoke-static <java.lang.Thread> ’sleep 100)

The behavior of interpreted code and compiled code is not identical, though
you should get the same result either way unless you have designed the classes
rather strangely. The details will be nailed down later, but the basic idea is
that the compiler will "inline" the invoke-static call if it can pick a single
"best" matching method.

Chapter 10: Object, Classes and Modules 57

Functioninvoke object name args ...
The name can be <symbol> or <string> that names one or more methods in
the Java class. The name is "mangled" (see Section 10.2 [Mangling], page 54)
into a valid Java name.
Any public methods (static or instance) in the specified class (or its super-
classes) that match "name" or "name$V" collectively form a generic procedure.
When the procedure is applied to the argument list, the most specific applicable
method is chosen depending on the argument list; that method is then called
with the given arguments. Iff the method is an instance method, the object is
used as the this argument; otherwise object is prepended to the args list. If
there are no applicable methods (or no methods at all!), or there is no "best"
method, WrongType is thrown.
("name$V" is used for procedures with #!rest or keyword args; the last ar-
gument must be an array type; all the "extra" arguments must be compatible
with the type of the array elements.)
The behavior of interpreted code and compiled code is not indentical, though
you should get the same result either way unless you have designed the classes
rather strangely. The details will be nailed down later, but the basic idea is
that the compiler will "inline" the invoke-static call if it can pick a single
"best" matching method.
If the compiler cannot determine the method to call (assuming the method
name is constant), the compiler has to generate code at run-time to find the
correct method. This is much slower, so the compiler will print a warning. To
avoid a waning, you can use a type declaration, or insert a cast:

(invoke (as <java.util.Date> my-date) ’setDate cur-date)

or
(let ((my-date :: <java.util.Date> (calculate-date))

(cur-date :: <int> (get-cur-date)))
(invoke my-date ’setDate cur-date))

Functioninvoke-special class receiver-object name arg ...
The class can be a <java.lang.Class>, a <gnu.bytecode.ClassType>, or a
<symbol> or <string> that names a Java class. The name can be <symbol>
or <string> that names one or more methods in the Java class. The name is
"mangled" (see Section 10.2 [Mangling], page 54) into a valid Java name.
This procedure is very similar to invoke and invoke-static and invokes the
specified method, ignoring any methods in subclasses that might overide it. One
interesting use is to invoke a method in your super-class like the Java language
super keyword.
Any methods in the specified class that match "name" or "name$V" collectively
form a generic procedure. That generic procedure is then applied as in invoke
using the receiver-object and the arguments (if any).
The compiler must be able to inline this procedure (because you cannot force
a specific method to be called using reflection). Therefore the class and name
must resolve at compile-time to a specific method.

Chapter 10: Object, Classes and Modules 58

(define-simple-class <MyClass> (<java.util.Date>)
((get-year) :: <int>
(+ (invoke-special <java.util.Date> (this) ’get-year)) 1900)
((set-year (year :: <int>)) :: <void>
(invoke-special <java.util.Date> (this) ’set-year (- year 1900))))

Functionclass-methods class name
Return a generic function containing those methods of class that match the
name name, in the sense of invoke-static. Same as:

(lambda args (apply invoke-static (cons class (cons name args))))

Some examples using these functions are ‘vectors.scm’ and ‘characters.scm’ the di-
rectory ‘kawa/lib’ in the Kawa sources.

10.5 Accessing fields of Java objects

Kawa has both a high-level interface and a low-level interface for accessing the fields of
Java objects and static fields. The lower-level interfaces are macros that return functions.
These functions can be inlined, producing efficient code. The higher-level functions are less
verbose and more convenient. However, they can only access public fields.

Functionfield object fieldname
Get the instance field with the given fieldname from the given Object. Returns
the value of the field, which must be public. This procedure has a setter, and
so can be used as the first operand to set!.

The field name is "mangled" (see Section 10.2 [Mangling], page 54) into a valid
Java name. If there is no accessible field whose name is "fieldname", we look
for a no-argument method whose name is "getFieldname".

If object is a primitive Java array, then fieldname can only be ’length, and
the result is the number of elements of the array.

Functionstatic-field class fieldname
Get the static field with the given fieldname from the given class. Returns the
value of the field, which must be public. This procedure has a setter, and so
can be used as the first operand to set!.

Examples:
(static-field <java.lang.System> ’err)
;; Copy the car field of b into a.
(set! (field a ’car) (field b ’car))

Functionslot-ref object fieldname
A synonym for (field object fieldname).

Functionslot-set! object fieldname value
A synonym for (set! (field object fieldname) value).

Chapter 10: Object, Classes and Modules 59

10.6 Defining new classes

Kawa provides various mechanisms for defining new classes. The define-class and
define-simple-class forms will usually be the preferred mechanisms. They have basically
the same syntax, but have a couple of differences. define-class allows multiple inheritance
as well as true nested (first-class) class objects. However, the implementation is more
complex: code using it is slightly slower, and the mapping to Java classes is a little less
obvious. (Each Scheme class is implemented as a pair of an interface and an implementation
class.) A class defined by define-simple-class is slightly more efficient, and it is easier
to access it from Java code.

The syntax of define-class are mostly compatible with that in the Guile and Stk
dialects of Scheme.

Syntaxdefine-class name (supers ...) field-or-method-decl ...
Syntaxdefine-simple-class name (supers ...) field-or-method-decl ...

field-or-method ::= field-decl | method-decl
field-decl ::= (fname [:: ftype] [option-keyword option-value]*)
method-decl ::= ((method-name formal-arguments) [:: rtype] body)

Defines a new class named name. If define-simple-class is used, creates
a normal Java class named name in the current package. (If name has the
form <xyx> the Java implementation type is named xyz.) If define-class the
implementation is unspecified. In most cases, the compiler creates a class pair,
consisting of a Java interface and a Java implementation class.

The class inherits from the classes and interfaces listed in supers. This
is a list of names of classes that are in scope (perhaps imported using
require), or names for existing classes or interfaces surrounded by <>, such
as <gnu.lists.Sequence>. If define-simple-class is used, at most one
of these may be the name of a normal Java class or classes defined using
define-simple-class; the rest must be interfaces or classes defined using
define-class. If define-class is used, all of the classes listed in supers
should be interfaces or classes defined using define-class.

Each field-decl declares a public instance "slot" (field) with the given fname. If
ftype is specified it is the type of the slot. The following option-keywords are
implemented:

type: ftype
Specifies that ftype is the type of (the values of) the field. Equiva-
lent to ‘:: ftype’.

allocation: class:
Specifies that there should be a single slot shared between all in-
stances of the class (and its sub-classes). Not yet implemented for
define-class, only for define-simple-class. In Java terms this
is a static field.

Chapter 10: Object, Classes and Modules 60

allocation: instance:
Specifies that each instance has a separate value "slot", and they
are not shared. In Java terms, this is a non-static field. This is
the default.

init-form: expr
An expression used to initialize the slot. The lexical environment
of the expr is that of the define-class or define-simple-class.
(This is not quite true in the current implementation, as the names
of fields and methods of this class are visible.)

init-value: value
A value expression used to initialize the slot. For now this is syn-
onymous with init-form:, but that may change (depending on what
other implementation do), so to be safe only use init-value: with
a literal.

init-keyword: name:
A keyword that that can be used to initialize instance in make calls.
For now, this is ignored, and name should be the same as the field’s
fname. static field.

Each method-decl declares a public non-static method, whose name is method-
name. (If method-name is not a valid Java method name, it is mapped to
something reasonable. For example foo-bar? is mapped to isFooBar.) The
types of the method arguments can be specified in the formal-arguments. The
return type can be specified by rtype, or is otherwise the type of the body. Cur-
rently, the formal-arguments cannot contain optional, rest, or keyword param-
eters. (The plan is to allow optional parameters, implemented using multiple
overloaded methods.)
The scope of the body of a method includes the field-decls of the object. It
does include the surrounding lexical scope. It sort-of also includes the declared
methods, but this is not working yet.

A simple example:
(define-simple-class <2d-vector> ()
(x type: <double> init-value: 0.0 init-keyword: x:)
(y type: <double> init-value: 0.0 init-keyword: y:)
((add (other :: <2d-vector>)) :: <2d-vector>
;; Kawa compiles this using primitive Java types!
(make <2d-vector>

x: (+ x (slot-ref other ’x))
y: (+ y (slot-ref other ’y))))

((scale (factor :: <double>)) :: <2d-vector>
;; Unfortunately, multiply is not yet optimized as addition is.
(make <2d-vector> x: (* factor x) y: (* factor y))))

(define-simple-class <3d-vector> (<2d-vector>)
(z type: <double> init-value: 0.0 init-keyword: z:)

Chapter 10: Object, Classes and Modules 61

((scale (factor :: <double>)) :: <2d-vector>
;; Note we cannot override the return type to <3d-vector>
;; because Java does not allow that. Should hide that. .
(make <3d-vector>

;; Unfortunately, slot names of inherited classes are not visible.
;; Until this is fixed, use slot-ref.
x: (* factor (slot-ref (this) ’x))
y: (* factor (slot-ref (this) ’y))
z: (* factor z))))

10.7 Anonymous classes

Syntaxobject (supers ...) field-or-method-decl ...
Returns a new instance of an anonymous (inner) class. The syntax is similar
to define-class.

field-or-method ::= field-decl | method-decl
field-decl ::= (fname [[[::] ftype] finit])

| (fname [:: ftype] [option-keyword option-value]*)
method-decl ::= ((method-name formal-arguments) [[::] rtype] body)

Returns a new instance of a unique (anonymous) class. The class inherits from
the list of supers, where at most one of the elements should be the base class
being extended from, and the rest are interfaces.
This is roughly equivalent to:

(begin
(define-simple-class hname (supers ...) field-or-method-decl ...)
(make hname))

A field-decl is as for define-class, except that we also allow an abbreviated
syntax. Each field-decl declares a public instance field. If ftype is given, it
specifies the type of the field. If finit is given, it is an expression whose value
becomes the initial value of the field. The finit is evaluated at the same time as
the object expression is evaluated, in a scope where all the fnames are visible.
A method-decl is as for define-class.

10.8 Modules and how they are compiled to classes

A module is a set of definitions that the module exports, as well as some actions (expres-
sions evaluated for their side effect). The top-level forms in a Scheme source file compile
a module; the source file is the module source. When Kawa compiles the module source,
the result is the module class. Each exported definition is translated to a public field in the
module class.

There are two kinds of module class: A static module is a class (or gets compiled to a
class) all of whose public fields a static, and that does not have a public constructor. A
JVM can only have a single global instance of a static module. An instance module has
a public default constructor, and usually has at least one non-static public field. There
can be multiple instances of an instance module; each instance is called a module instance.

Chapter 10: Object, Classes and Modules 62

However, only a single instance of a module can be registered in an environment, so in
most cases there is only a single instance of instance modules. Registering an instance in
an environment means creating a binding mapping a magic name (derived from the class
name) to the instance.

In fact, any Java class class that has the properties of either an instance module or a
static module, is a module, and can be loaded or imported as such; the class need not have
written using Scheme.

10.8.1 Name visibility

The definitions that a module exports are accessible to other modules. These are the
"public" definitions, to use Java terminology. By default, all the identifiers declared at the
top-level of a module are exported, except those defined using define-private. However,
a major purpose of using modules is to control the set of names exported. One reason is to
reduce the chance of accidental name conflicts between separately developed modules. An
even more important reason is to enforce an interface: Client modules should only use the
names that are part of a documented interface, and should not use internal implementation
procedures (since those may change).

If there is a module-export declaration in the module, then only those names listed in
a module-export are exported. There can be more than one module-export, and they
can be anywhere in the Scheme file. As a matter of good style, I recommend a single
module-export near the beginning of the file.

Syntaxmodule-export name ...
Make the definition for each name be exported. Note that it is an error if
there is no definition for name in the current module, or if it is defined using
define-private.

In this module, fact is public and worker is private:
(module-export fact)
(define (worker x) ...)
(define (fact x) ...)

Alternatively, you can write:
(define-private (worker x) ...)
(define (fact x) ...)

10.8.2 Definitions

In addition to define (which can take an optional type specifier), Kawa has some extra
definition forms.

Syntaxdefine-private name [:: type] value
Syntaxdefine-private (name formals) body

Same as define, except that name is not exported.

Syntaxdefine-constant name [:: type] value
Definites name to have the given value. The value is readonly, and you cannot
assign to it. (This is not fully enforced.) If the definition is at module level, then

Chapter 10: Object, Classes and Modules 63

the compiler will create a final field with the given name and type. The value
is evaluated as normal; however, if it is a compile-time constant, it defaults to
being static.

Syntaxdefine-variable name [init]
If init is specified and name does not have a global variable binding, then init is
evaluated, and name bound to the result. Otherwise, the value bound to name
does not change. (Note that init is not evaluated if name does have a global
variable binding.)
Also, declares to the compiler that name will be looked up in the dynamic envi-
ronment. This can be useful for shutting up warnings from --warn-undefined-
variable.
This is similar to the Common Lisp defvar form. However, the Kawa version
is (currently) only allowed at module level.

Syntaxdefine-namespace name namespace-uri
Defines name as namespace alias - a lexically scoped "nickname" for the names-
pace (or package) whose full name is namespace-uri, which should be a string
literal. Any symbols in the scope of this definitions that contain a colon, and
where the part before the colon matches the name will be treated as being in
the package/namespace whose global unique name is the namespace-uri.
The features is currently used for XML (to be documented). In XML terminol-
ogy, a name containing a colon is a qualified name. The part of the name before
the colon is a namespace prefix, which is an aliases for a locally-visible names-
pace uri. The latter is an arbitrary string, but for uniqueness it is recommended
that it be a uri belonging to the organization that defines the namespace. (It
need to correspond to an actual browsable location, even though it looks like
one.) The part of a name following the colon is the local part of the name.
If the namespace starts with the strings "class:", then the name can be used
for invoking Java methods - see Section 10.4 [Method operations], page 55.

10.8.3 How a module becomes a class

If you want to just use a Scheme module as a module (i.e. load or require it), you don’t
care how it gets translated into a module class. However, Kawa gives you some control over
how this is done, and you can use a Scheme module to define a class which you can use with
other Java classes. This style of class definition is an alternative to define-class [not yet
implemented] which lets you define classes and instances fairly conveniently.

The default name of the module class is the main part of the filename of the Scheme
source file (with directories and extensions sripped off). That can be overridden by the -T
Kawa command-line flag. The package-prefix specified by the -P flag is prepended to give
the fully-qualified class name.

Syntaxmodule-name <name>
Sets the name of the generated class, overriding the default. If there is no ‘.’
in the name, the package-prefix (specified by the -P Kawa command-line flag)
is prepended.

Chapter 10: Object, Classes and Modules 64

By default, the base class of the generated module class is unspecified; you cannot count
on it being more specific than Object. However, you can override it with module-extends.

Syntaxmodule-extends <class>
Specifies that the class generated from the immediately surrounding module
should extend (be a sub-class of) the class <class>.

Syntaxmodule-implements <interface> ...
Specifies that the class generated from the immediately surrounding module
should implement the interfaces listed.

Note that the compiler does not currently check that all the abstract methods requires
by the base class or implemented interfaces are actually provided, and have the correct
signatures. This will hopefully be fixed, but for now, if you are forgot a method, you will
probably get a verifier error

For each top-level exported definition the compiler creates a corresponding public field
with a similar (mangled) name. By default, there is some indirection: The value of the
Scheme variable is not that of the field itself. Instead, the field is a gnu.mapping.Symbol
object, and the value Scheme variable is defined to be the value stored in the Symbol.
Howewer, if you specify an explicit type, then the field will have the specified type, instead
of being a Symbol. The indirection using Symbol is also avoided if you use define-constant.

If the Scheme definition defines a procedure (which is not re-assigned in the module),
then the compiler assumes the variable as bound as a constant procedure. The compiler
generates one or more methods corresponding to the body of the Scheme procedure. It
also generates a public field with the same name; the value of the field is an instance of a
subclass of <gnu.mapping.Procedure> which when applied will execute the correct method
(depending on the actual arguments). The field is used when the procedure used as a value
(such as being passed as an argument to map), but when the compiler is able to do so, it
will generate code to call the correct method directly.

You can control the signature of the generated method by declaring the parameter types
and the return type of the method. See the applet (see Section 6.5 [Applet compilation],
page 15) example for how this can be done. If the procedures has optional parameters,
then the compiler will generate multiple methods, one for each argument list length. (In
rare cases the default expression may be such that this is not possible, in which case an
"variable argument list" method is generated instead. This only happens when there is a
nested scope inside the default expression, which is very contrived.) If there are #!keyword
or #!rest arguments, the compiler generate a "variable argument list" method. This is
a method whose last parameter is either an array or a <list>, and whose name has $V
appended to indicate the last parameter is a list.

Top-leval macros (defined using either define-syntax or defmacro) create a field whose
type is currently a sub-class of kawa.lang.Syntax; this allows importing modules to detect
that the field is a macro and apply the macro at compile time.

Chapter 10: Object, Classes and Modules 65

Syntaxmodule-static name ...
Syntaxmodule-static #t
Syntaxmodule-static #f

Control whether the generated fields and methods are static. If #t is specified,
then the module will be a static module, all definitions will be static, and
the module body is evaluated in the class’s static initializer. Otherwise, the
module is an instance module. However, the names that are explicitly listed
will be compiled to static fields and methods. If #f is specified, then all exported
names will be compiled to non-static (instance) fields and methods.
By default, if no module-static is specified, the following rules apply:
1. If there is a module-extends or module-implements declaration, then

(module-static #f) is implied.
2. If the --module-static command-line parameter is specified, then (module-

static #t) is implied.
3. (Not yet implemented: If there are no top-level actions and all definitions

are procedure definitions, macro definitions, or constant definitions, then
(module-static #t) is implied.)

4. Otherwise, a method will be static iff it doesn’t need to reference non-static
fields or methods of the module instance. In that case, the corresponding
field will also be static.

Note (module-static #t) usually produces more efficient code, and is recom-
mended if a module contains only procedure or macro definitions. (This may
become the default.) However, a static module means that all environments in
a JVM share the same bindings, which you may not want if you use multiple
top-level environments.

Unfortuntely, the Java class verifier does not allow fields to have arbitrary names. There-
fore, the name of a field that represents a Scheme variable is "mangled" (see Section 10.2
[Mangling], page 54) into an acceptable Java name. The implementation can recover the
original name of a field X as ((gnu.mapping.Named) X).getName() because all the standard
compiler-generate field types implemented the Named interface.

The top-level actions of a module will get compiled to a run method. If there is
an explicit method-extends, then the module class will also automatically implement
java.lang.Runnable. (Otherwise, the class does not implement Runnable, since in that
case the run method return an Object rather than void. This will likely change.)

10.8.4 Requiring (importing) a module

You can import a module into the current namespace with require.

Syntaxrequire modulespec
The modulespec can be either a <classname> or a ’featurename. In either case
the names exported by the specified module (class) are added to the current
set of visible names.
If modulespec is <classname> where classname is an instance module (it has
a public default constructor), and if no module instance for that class has

Chapter 11: The Scheme-Java interface 66

been registered in the current environment, then a new instance is created
and registered (using a "magic" identifier). If the module class either inher-
its from gnu.expr.ModuleBody or implements java.lang.Runnable then the
corresponding run method is executed. (This is done after the instance is reg-
istered so that cycles can be handled.) These actions (creating, registering, and
running the module instance) are done both at compile time and at run time,
if necessary.
All the public fields of the module class are then incorporated in the current
set of local visible names in the current module. This is done at compile time
- no new bindings are created at run-time (except for the magic binding used
to register the module instance), and the imported bindings are private to the
current module. References to the imported bindings will be compiled as field
references, using the module instance (except for static fields).
If the modulespec is ’featurename then the featurename is looked up (at com-
pile time) in the "feature table" which yields the implementing <classname>.

For some examples, you may want to look in the gnu/kawa/slib directory.

11 The Scheme-Java interface

Kawa has extensive features so you can work with Java objects and call Java methods.

11.1 Scheme types in Java

All Scheme values are implemented by sub-classes of ‘java.lang.Object’.
Scheme symbols are implemented using java.lang.String. (Don’t be confused by

the fact the Scheme sybols are represented using Java Strings, while Scheme strings are
represented by gnu.lists.FString. It is just that the semantics of Java strings match
Scheme symbols, but do not match mutable Scheme strings.) Interned symbols are presented
as interned Strings. (Note that with JDK 1.1 string literals are automatically interned.)

Scheme integers are implemented by gnu.math.IntNum. Use the make static function to
create a new IntNum from an int or a long. Use the intValue or longValue methods to get
the int or long value of an IntNum.

A Scheme "flonum" is implemented by gnu.math.DFloNum.
A Scheme pair is implemented by gnu.lists.Pair.
A Scheme vector is implemented by gnu.lists.FVectror.
Scheme characters are implemented using gnu.text.Char.
Scheme strings are implemented using gnu.lists.FString.
Scheme procedures are all sub-classes of gnu.mapping.Procedure. The "action" of a

‘Procedure’ is invoked by using one of the ‘apply*’ methods: ‘apply0’, ‘apply1’, ‘apply2’,
‘apply3’, ‘apply4’, or ‘applyN’. Various sub-class of ‘Procedure’ provide defaults for the
various ‘apply*’ methods. For example, a ‘Procedure2’ is used by 2-argument proce-
dures. The ‘Procedure2’ class provides implementations of all the ‘apply*’ methods except
‘apply2’, which must be provided by any class that extends Procedure2.

Chapter 11: The Scheme-Java interface 67

11.2 Low-level Operations on Java Arrays

The following macros evaluate to procedures that can be used to manipulate primitive
Java array objects. The compiler can inline each to a single bytecode instruction (not
counting type conversion).

Syntaxprimitive-array-new element-type
Evaluates to a one-argument procedure. Applying the resulting procedure to
an integer count allocates a new Java array of the specified length, and whose
elements have type element-type.

Syntaxprimitive-array-set element-type
Evaluates to a three-argument procedure. The first argument of the resulting
procedure must be an array whose elements have type element-type; the second
argument is an index; and the third argument is a value (coercible to element-
type) which replaces the value specified by the index in the given array.

Syntaxprimitive-array-get element-type
Evaluates to a two-argument procedure. The first argument of the resulting
procedure must be an array whose elements have type element-type; the sec-
ond argument is an index. Applying the procedure returns the element at the
specified index.

Syntaxprimitive-array-length element-type
Evaluates to a one-argument procedure. The argument of the resulting proce-
dure must be an array whose elements have type element-type. Applying the
procedure returns the length of the array. (Alternatively, you can use (field
array ’length).)

11.3 Low-level Method invocation

The following lower-level primitives require you to specify the parameter and return
types explicitly. You should probably use the functions invoke and invoke-static (see
Section 10.4 [Method operations], page 55) instead.

Syntaxprimitive-constructor class (argtype ...)
Returns a new anonymous procedure, which when called will create a new object
of the specified class, and will then call the constructor matching the specified
argument types.

Syntaxprimitive-virtual-method class method rtype (argtype ...)
Returns a new anonymous procedure, which when called will invoke the instance
method whose name is the string method in the class whose name is class.

Syntaxprimitive-static-method class method rtype (argtype ...)
Returns a new anonymous procedure, which when called will invoke the static
method whose name is the string method in the class whose name is class.

Chapter 11: The Scheme-Java interface 68

Syntaxprimitive-interface-method interface method rtype (argtype ...)
Returns a new anonymous procedure, which when called will invoke the match-
ing method from the interface whose name is interface.

The macros return procedure values, just like lambda. If the macros are used directly
as the procedure of a procedure call, then kawa can inline the correct bytecodes to call the
specified methods. (Note also that neither macro checks that there really is a method that
matches the specification.) Otherwise, the Java reflection facility is used.

11.4 Low-level Operations on Object Fields

The following macros evaluate to procedures that can be used to access or change the
fields of objects or static fields. The compiler can inline each to a single bytecode instruction
(not counting type conversion).

These macros are deprecated. The fields and static-field functions (see Section 10.5
[Field operations], page 58) are easier to use, more powerful, and just as efficient. (One
exception is for primitive-set-static; while its functionality can be expressed using
(set! (static-field ...) ...), that idiom is currently less efficient.) Also, the high-
level functions currently do not provide access to private fields.

Syntaxprimitive-get-field class fname ftype
Use this to access a field named fname having type type in class class. Evaluates
to a new one-argument procedure, whose argument is a reference to an object
of the specified class. Calling that procedure returns the value of the specified
field.

Syntaxprimitive-set-field class fname ftype
Use this to change a field named fname having type type in class class. Evalu-
ates to a new two-argument procedure, whose first argument is a reference to an
object of the specified class, and the second argument is the new value. Calling
that procedure sets the field to the specified value. (This macro’s name does
not end in a ‘!’, because it does not actually set the field. Rather, it returns a
function for setting the field.)

Syntaxprimitive-get-static class fname ftype
Like primitive-get-field, but used to access static fields. Returns a zero-
argument function, which when called returns the value of the static field.

Syntaxprimitive-set-static class fname ftype
Like primitive-set-field, but used to modify static fields. Returns a one-
argument function, which when called sets the value of the static field to the
argument.

11.5 Loading Java functions into Scheme

When kawa -C compiles (see Section 6.2 [Files compilation], page 13) a Scheme module
it creates a class that implements the java.lang.Runnable interface. (Usually it is a

Chapter 11: The Scheme-Java interface 69

class that extends the gnu.expr.ModuleBody.) It is actually fairly easy to write similar
"modules" by hand in Java, which is useful when you want to extend Kawa with new
"primitive functions" written in Java. For each function you need to create an object that
extends gnu.mapping.Procedure, and then bind it in the global environment. We will look
at these two operations.

There are multiple ways you can create a Procedure object. Below is a simple example,
using the Procedure1 class, which is class extending Procedure that can be useful for
one-argument procedure. You can use other classes to write procedures. For example a
ProcedureN takes a variable number of arguments, and you must define applyN(Object[]
args) method instead of apply1. (You may notice that some builtin classes extend
CpsProcedure. Doing so allows has certain advantages, including support for full tail-
recursion, but it has some costs, and is a bit trickier.)

import gnu.mapping.*;
import gnu.math.*;
public class MyFunc extends Procedure1
{
// An "argument" that is part of each procedure instance.
private Object arg0;

public MyFunc(String name, Object arg0)
{
super(name);
this.arg0 = arg0;

}

public Object apply1 (Object arg1)
{
// Here you can so whatever you want. In this example,
// we return a pair of the argument and arg0.
return gnu.lists.Pair.make(arg0, arg1);

}
}

You can create a MyFunc instance and call it from Java:
Procedure myfunc1 = new MyFunc("my-func-1", Boolean.FALSE);
Object aresult = myfunc1.apply1(some_object);

The name my-func-1 is used when myfunc1 is printed or when myfunc1.toString() is
called. However, the Scheme variable my-func-1 is still not bound. To define the function
to Scheme, we can create a "module", which is a class intended to be loaded into the top-
level environment. The provides the definitions to be loaded, as well as any actions to be
performed on loading

public class MyModule
{
// Define a function instance.
public static final MyFunc myfunc1
= new MyFunc("my-func-1", IntNum.make(1));

}

Chapter 11: The Scheme-Java interface 70

If you use Scheme you can use require:
#|kawa:1|# (require <MyModule>)
#|kawa:2|# (my-func-1 0)
(1 0)

Note that require magically defines my-func-1 without you telling it to. For each public
final field, the name and value of the field are entered in the top-level environment when
the class is loaded. (If there are non-static fields, or the class implements Runnable, then
an instance of the object is created, if one isn’t available.) If the field value is a Procedure
(or implements Named), then the name bound to the procedure is used instead of the field
name. That is why the variable that gets bound in the Scheme environment is my-func-1,
not myfunc1.

Instead of (require <MyModule>), you can do (load "MyModule") or (load "MyModule.class").
If you’re not using Scheme, you can use Kawa’s -f option:

$ kawa -f MyModule --xquery --
#|kawa:1|# my-func-1(3+4)
<list>1 7</list>

If you need to do some more complex calculations when a module is loaded, you can put
them in a run method, and have the module implement Runnable:

public class MyModule implements Runnable
{
public void run ()
{
Interpreter interp = Interpreter.getInterpreter();
Object arg = Boolean.TRUE;
interp.defineFunction (new MyFunc ("my-func-t", arg));
System.err.println("MyModule loaded");

}
}

Loading MyModule causes "MyModule loaded" to be printed, and my-func-t to be de-
fined. Using Interpreter’s defineFunction method is recommended because it does the
righ things even for languages like Common Lisp that use separate "namespaces" for vari-
ables and functions.

A final trick is that you can have a Procedure be its own module:
import gnu.mapping.*;
import gnu.math.*;
public class MyFunc2 extends Procedure2
{
public MyFunc(String name)
{
super(name);

}

public Object apply2 (Object arg1, arg2)
{
return gnu.lists.Pair.make(arg1, arg2);

}

Chapter 12: Tools for working with XML and HTML 71

public static final MyFunc myfunc1 = new MyFunc("my-func-2);
}

11.6 Evaluating Scheme expressions from Java

The following methods are recommended if you need to evaluate a Scheme expression
from a Java method. (Some details (such as the ‘throws’ lists) may change.)

Static methodvoid Scheme.registerEnvironment ()
Initializes the Scheme environment. Maybe needed if you try to load a module
compiled from a Scheme source file.

Static methodObject Scheme.eval (InPort port, Environment env)
Read expressions from port, and evaluate them in the env environment,
until end-of-file is reached. Return the value of the last expression, or
Interpreter.voidObject if there is no expression.

Static methodObject Scheme.eval (String string, Environment env)
Read expressions from string, and evaluate them in the env environment, until
the end of the string is reached. Return the value of the last expression, or
Interpreter.voidObject if there is no expression.

Static methodObject Scheme.eval (Object sexpr, Environment env)
The sexpr is an S-expression (as may be returned by read). Evaluate it in the
env environment, and return the result.

For the Environment in most cases you could use ‘Environment.current()’. Before
you start, you need to initialize the global environment, which you can with

Environment.setCurrent(new Scheme().getEnvironment());

Alternatively, rather than setting the global environment, you can use this style:

Scheme scm = new Scheme();
Object x = scm.eval("(+ 3 2)");
System.out.println(x);

12 Tools for working with XML and HTML

Kawa has a number of experimental features for working with XML. These are built on
the concepts of the gnu.lists package.

12.0.1 Scheme functions

Functionmake-element tag [attribute ...] child ...
Create a representation of a XML element, corresponding to

Chapter 12: Tools for working with XML and HTML 72

<tag attribute...>child...</tag>

The result is a TreeList, though if the result context is a consumer the result
is instead "written" to the consumer. Thus nested calls to make-element only
result in a single TreeList. More generally, whether an attribute or child is
includded by copying or by reference is (for now) undefined. The tag should
currently be a symbol, though in the future it should be a qualified name. An
attribute is typically a call to make-attribute, but it can be any attribute-
valued expression.

(make-element ’p
"The time is now: "
(make-element ’code (make <java.util.Date>)))

Functionmake-attribute name value...
Create an "attribute", which is a name-value pair. For now, name should be a
symbol

Functionas-xml value
Return a value (or multiple values) that when printed will print value in XML
syntax.

(require ’xml)
(as-xml (make-element ’p "Some " (make-element ’em "text") "."))

prints <p>Some text.</p>.

12.0.2 xquery language

W3C is working an an XML Query language (http://www.w3c.org/XML/Query), and
a draft has been released. If you start Kawa with the --xquery it selects the "XQuery"
source language; this also prints output using XML syntax. See the Qexo (Kawa-XQuery)
home page (http://www.gnu.org/software/qexo/) for examples and more information.

12.0.3 XSL transformations

There is an experimental implementation of the XSLT (XML Stylesheet Language
Transformations) language. Selecting --xslt at the Kawa command line will parse a
source file according to the syntax on an XSLT stylesheet. See the Kawa-XSLT page
(http://www.gnu.org/software/qexo/xslt.html) for more information.

12.1 Writing web-server-side Kawa scripts

You can compile a Kawa program (written in any supported Kawa language, including
Scheme, BRL, KRL, or XQuery), and run it as either servlet engine (using a web server
that supports servlets), or as a "CGI script" on most web servers.

In either case, the result of evaluating the top-level expressions becomes the HTTP
response that the servlet sends back to the browser. The result is typically an HTML/XML
element code object; Kawa will automatically format the result as appropriate for the
type. The initial result values may be special "response header values", as created by the

Chapter 12: Tools for working with XML and HTML 73

response-header function. Kawa will use the response header values to set various required
and optional fields of the HTTP response. Note that response-header does not actually do
anything until it is "printed" to the standard output. Note also that if a "Content-Type"
response value is printed that controls the formatting of the following non-response-header
values.

Here is a simple program hello.scm:
(require ’http) ; Required for Scheme, though not BRL/KRL.
(response-content-type ’text/html) ; Optional
(make-element ’p
"The request URL was: " (request-url))

(make-element ’p
(let ((query (request-query-string)))
(if query

(values-append "The query string was: " query)
"There was no query string.")))

#\newline ; emit a new-line at the end

The same program using KRL is shorter:
<p>The request URL was: [(request-url)]</p>,
<p>[(let ((query (request-query-string)))

(if query
(begin]The query string was: [query)
]There was no query string.[))]</p>

You can also use XQuery:
<p>The request URL was: {request-url()}</p>
<p>{let $query := request-query-string() return

if ($query)
then ("The query string was: ",$query)
else "There was no query string."}</p>

Either way, you compile your program to a servlet:
kawa --servlet -C hello.scm

or:
kawa --servlet --krl -C hello.krl

or:
kawa --servlet --xquery -C hello.xql

The next two sections will explain how you can install this script as either a servlet or
a CGI script.

12.2 Installing Kawa programs as Servlets

You can compile a Kawa program to a Servlet, and run it in a servlet engine (a Servlet-
aware web server). I assume you have compiled your program to a servlet as descrbibed in
the previous section.

If you have Tomcat 4.x installed, and you want hello to be part of the myutils
"web application", copy hello*.class into $CATALINA_HOME/webapps/myutils/WEB-
INF/classes/. You also need to copy Kawa somewhere where Tomcat can find it, for

Chapter 12: Tools for working with XML and HTML 74

example $CATALINA_HOME/lib/kawa-1.7.90.jar. You can then run the hello servlet
using the URL http://localhost:8080/myutils/servlet/hello.

Functioncurrent-servlet
When called from a Kawa servlet’s handler, returns the actual javax.servlet.http.HttpServlet
instance.

Functioncurrent-servlet-context
Returns the ServletContext of the currently executing servlet.

Functioncurrent-servlet-config
Returns the ServletConfig of the currently executing servlet.

Functionservlet-context-realpath
Returns the file path of the current servlet’s "Web application".

12.3 Installing Kawa programs as CGI scripts

The recommended way to have a web-server run a Kawa program as a CGI script is to
compile the Kawa program to a servlet (as explained in Section 12.1 [Server-side scripts],
page 72, and then use Kawa’s supplied CGI-to-servlet bridge.

First, compile your program to one or more class files as explain in Section 12.1 [Server-
side scripts], page 72. For example:

kawa --servlet --xquery -C hello.xql

Then copy the resulting .class files to your server’s CGI directory. On Red Hat
GNU/Linux, you can do the following (as root):

cp hello*.class /var/www/cgi-bin/

Next find the cgi-servlet program that Kawa builds and installs. If you installed
Kawa in the default place, it will be in /usr/local/bin/cgi-servlet. (You’ll have this
if you installed Kawa from source, but not if you’re just using Kawa .jar file.) Copy this
program into the same CGI directory:

cp /usr/local/bin/cgi-servlet /var/www/cgi-bin/

You can link instead of copying:
ln -s /usr/local/bin/cgi-servlet /var/www/cgi-bin/

However, because of security issues this may not work, so it is safer to copy the file.
However, if you already have a copy of cgi-servlet in the CGI-directory, it is safe to make
a hard link instead of making an extra copy.

Make sure the files have the correct permissions:
chmod a+r /var/www/cgi-bin/hello*.class /var/www/cgi-bin/hello
chmod a+x /var/www/cgi-bin/hello

Now you should be able to run the Kawa program, using the URL http://localhost/cgi-
bin/hello. It may take a few seconds to get the reply, mainly because of the start-up time
of the Java VM. That is why servlets are preferred. Using the CGI interface can still be
useful for testing or when you can’t run servlets. We hope to soon be able to run Kawa
CGI scripts compiled using GCJ, which should have much reduced start-up time, making
Kawa servlets more practical.

Chapter 12: Tools for working with XML and HTML 75

12.4 Functions for accessing HTTP requests

The following functions are useful for accessing properties of a HTTP request, in a Kawa
program that is run either as a servlet or a CGI script. These functions can be used from
plain Scheme, from KRL (whether in BRL-compatible mode or not), and from XQuery.

If using plain Scheme, you need to do the following before using these functions.
(require ’http)

This is not needed for KRL or XQuery.

Functionrequest-method
Returns the method of the HTTP request, usually "GET" or "POST". Corre-
sponds to the CGI variable REQUEST_METHOD.

Functionrequest-path-info
Corresponds to the CGI variable PATH_INFO.

Functionrequest-path-translated
Corresponds to the CGI variable PATH_TRANSLATED.

Functionrequest-uri
Returns the URI of the request, not including the query string, or server speci-
fication. The is the combination of CGI variables SCRIPT_NAME and PATH_INFO.

Functionrequest-url
Returns the complete URL of the request, except the query string.

Functionrequest-query-string
Returns the query string from an HTTP request. The query string is the part
of the request URL after a quetion mark. Returns false if there was no query
string. Corresponds to the CGI variable QUERY_STRING.

12.5 Functions for generating HTTP responses

Functionunescaped-data data
Creates a special value which causes data to be printed, as is, without nor-
mal escaping. For example, when the output format is XML, then print-
ing "<?xml?>" prints as ‘<?xml?>’, but (unescaped-data "<?xml?>")
prints as ‘<?xml?>’.

If using plain Scheme, you need to do the following before using these functions.
(require ’http)

This is not needed for KRL or XQuery.

Functionresponse-header key value
Create the response header ‘key: value’ in the HTTP response. The result is a
"response header value" (of some unspecified type). It does not directly set or
print a response header, but only does so when you actually "print" its value
to the response output stream.

Chapter 13: KRL - The Kawa Report Language for generating XML/HTML 76

Functionresponse-content-type type
Species the content-type of the result - for example "text/plain". Convenience
function for (response-header "Content-Type" type).

Functionerror-response code [message]
Creates a response-header with an error code of code and a response message
of message. (For now this is the same as response-status.)
Note this also returns a response-header value, which does not actually do
anything unless it is returned as the result of executing a servlet body.

Functionresponse-status code [message]
Creates a response-header with an status code of code and a response message
of message. (For now this is the same as error-response.)

13 KRL - The Kawa Report Language for
generating XML/HTML

KRL (the "Kawa Report Language") is powerful Kawa dialect for embedding Scheme
code in text files such as HTML or XML templates. You select the KRL language by
specifying --krl on the Kawa command line.

KRL is based on on BRL (http://brl.sourceforge.net/), Bruce Lewis’s "Beautiful
Report Language", and uses some of BRL’s code, but there are some experimental differ-
ences, and the implementation core is different. You can run KRL in BRL-compatility-mode
by specifying --brl instead of --krl.

13.1 Differences between KRL and BRL

This section summarizes the known differences between KRL and BRL. Unless otherwise
specified, KRL in BRL-compatibility mode will act as BRL.
• In BRL a normal Scheme string "mystring" is the same as the inverted quote string

]mystring[, and both are instances of the type <string>. In KRL "mystring" is a
normal Scheme string of type <string>, but]mystring[is special type that suppresses
output escaping. (It is equivalent to (unescaped-data "mystring").)

• When BRL writes out a string, it does not do any processing to escape special characters
like <. However, KRL in its default mode does normally escape characters and strings.
Thus "<a>" is written as <a&gr;. You can stop it from doing this by overriding
the output format, for example by specifying --output-format scheme on the Kawa
command line, or by using the unescaped-data function.

• Various Scheme syntax forms, including lambda, take a <body>, which is a list of one or
more declarations and expressions. In normal Scheme and in BRL the value of a <body>
is the value of the last expression. In KRL the value of a <body> is the concatenation
of all the values of the expressions, as if using values-append.

• In BRL a word starting with a colon is a keyword. In KRL a word starting with a colon
is an identifier, which by default is bound to the make-element function specialized to
take the rest of the word as the tag name (first argument).

Chapter 16: Projects using Kawa 77

• BRL has an extensive utility library. Most of this has not yet been ported to KRL,
even in BRL-compatibility mode.

14 Where to report bugs, discuss changes, etc

14.1 Reporting bugs

To report a bug or feature request for Kawa (including Qexo or JEmacs), it is best to use
the bug-submission page (http://savannah.gnu.org/bugs/?func=addbug&group=kawa).
You can browse and comment on existing bug reports using the Kawa Bugzilla page
(http://savannah.gnu.org/bugs/?group=kawa).

When a bug report is created or modified, mail is automatically sent to the bug-kawa@gnu.org
list. You can subscribe, unsubscribe, or browse the archives through the bug-kawa web
interface (http://mail.gnu.org/mailman/listinfo/bug-kawa).

14.2 General Kawa email and discussion

The general Kawa email list is kawa@sources.redhat.com. This mailing list is used for
announcements, questions, patches, and general discussion relating to Kawa. If you wish
to subscribe, send a blank message request to kawa-subscribe@sources.redhat.com. To
unsubscribe, send a blank message to kawa-unsubscribe@sources.redhat.com. (If your
mail is forwarded and you’re not sure which email address you’re subscribed as send mail to
the address following mailto: in the List-Unsubscribe line in the headers of the messages
you get from the list.)

You can browse the archive of past messages (http://sources.redhat.com/ml/kawa/).
There are separate mailing lists for Qexo (http://mail.gnu.org/mailman/listinfo/qexo-general)

and JEmacs (http://lists.sourceforge.net/mailman/listinfo/jemacs-info).

15 Technical Support for Kawa

If you have a project that depends on Kawa or one of its component packages, you might
do well get get paid priority support from Kawa’s author.

The base price is $2400 for one year. This entitles you to basic support by email or phone.
Per per@bothner.com will answer techical questions about Kawa or its implementation,
investigate bug reports, and suggest work-arounds. I may (at my discretion) provide fixes
and enhancements (patches) for simple problems. Reponse for support requests received
using the day (California time) will normally be within a few hours.

All support requests must come through a single designated contact person. If Kawa is
important to your business, you probably want at least two contact people, doubling the
price.

If the support contract is cancelled (by either party), remaining time will be prorated
and refunded.

Per is also available for development projects.

Chapter 17: License 78

16 Projects using Kawa

JEmacs is included in the Kawa distribution. It is a project to re-implement Emacs, al-
lowing a mix of Java. Scheme, and Emacs Lisp. It has its own home-page (http://www.jemacs.net/).

BRL ("the Beautiful Report Language") is a database-oriented language to embed in
HTML and other markup. BRL (http://brl.sourceforge.net/) allows you to embed
Scheme in a an HTML file on a web server.

The Health Media Research Laboratory, part of the Comprehensive Cancer Center at the
University of Michigan, is using Kawa as an integral part of its core tailoring technologies.
Java programs using Kawa libraries are used to administer customized web-based surveys,
generate tailored feedback, validate data, and "characterize," or transform, data. Kawa
code is embedded directly in XML-formatted surveys and data dictionaries. Performance
and ease of implementation has far exceeded expectations. For more information contact
Paul R. Potts, Technical Director, Health Media Research Lab, <potts@umich.edu>.

Mike Dillon (mdillon@gjt.org) did the preliminary work of creating a Kawa plugin
for jEdit. It is called SchemeShell and provides a REPL inside of the jEdit console for
executing expressions in Kawa (much as the BeanShell plugin does with the BeanShell
scripting language). It is currently available only via CVS from:

CVSROOT=:pserver:anonymous@cvs.jedit.sourceforge.net:/cvsroot/jedit
MODULE=plugins/SchemeShell

STMicroelectronics (marco.vezzoli@st.com) uses Kawa in a prototypal intranet 3tier
information retrival system as a communication protocol between server and clients and to
do server agents programming.

The Nice Programming Language is an open source research language that has a Java-
like syntax. It features multiple dispatch methods, parametric types, higher-order functions,
tuples, ..., and the new concept of "abstract interfaces". The Nice compiler (nicec) uses
Kawa’s gnu.expr and gnu.bytecode packages to generate Java bytecode. You can find
more about Nice at http://nice.sourceforge.net. For more information feel free to
contact Daniel Bonniot (d.bonniot@mail.dotcom.fr).

17 License

17.1 License for the Kawa software

The license for Kawa and the packages it depends on is a "modified Gnu Public License".
You can find it in the file COPYING in the Kawa sources, and also quoted here:.

The Java classes (with related files and documentation) in these packages
are copyright (C) 1996, 1997, 1998, 1999 Per Bothner.

These classes are distributed in the hope that they will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Chapter 17: License 79

These classes are free software. You can use and re-distribute a class
without restriction (in source or binary form) as long as you use a
version that has not been modified in any way from a version released
by Per Bothner, Red Hat inc, or the Free Software Foundation.
You may make and distribute a modified version, provided you follow
the terms of the GNU General Public License; either version 2,
or (at your option) any later version.

The file COPYING also contains a copy of the GNU General Public License version 2.

People have asked what the Kawa license means in practice. Informally, you get to pick
between these choices:

1. Use Kawa as distributed by Per Bothner, Red Hat Inc, or the Free Software Foundation
(or their approved agents), with no modifications. In that case, you can use Kawa for
any purpose you like, and distribute your application with any license you like. (This
basically gives you the same rights as a typical commercial royalty-free re-distribution
license.)

2. Obey the terms of the standard Gnu Public License. (See http://www.gnu.org/copyleft/gpl.html).
Informally, this means that if you distribute any application that is based on Kawa,
you must also make available to all your recipients (customers) the source code for your
entire application, giving them the modification and re-distribution rights they have
under the GPL. In a Java context, I take "entire application" to mean all classes (and
native code) that run in the same Java virtual machine, except for the Java runtime
system itself (the virtual machine, low-level run-time system, and any classes in a java
or javax package).

3. If you need to make a change to Kawa, you can submit them to Per Bothner, and
convince him to include them in future Kawa releases.

4. You can negotiate some other (commercial) license with Per Bothner.

In general, if the license of Kawa or associated packages causes difficulties, let me know.

Kawa uses some math routines from fdlib’s libf77, which bear the following copyright:

Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.

Permission to use, copy, modify, and distribute this software and its documen-
tation for any purpose and without fee is hereby granted, provided that the
above copyright notice appear in all copies and that both that the copyright
notice and this permission notice and warranty disclaimer appear in support-
ing documentation, and that the names of AT&T Bell Laboratories or Bellcore
or any of their entities not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

AT&T and Bellcore disclaim all warranties with regard to this software, in-
cluding all implied warranties of merchantability and fitness. In no event shall
AT&T or Bellcore be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of this software.

Index 80

17.2 Copyright for this manual

Here is the license for this manual:
Copyright c© 1996, 1997, 1998, 1999 Per Bothner

Parts of this manual were derived from the SLIB manual, copyright c© 1993-1998 Todd R.
Eigenschink and Aubrey Jaffer.
Parts of this manual were derived from ISO/EIC 10179:1996(E) (Document Style and Specif-
ical Language) - unknown copyright.

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions, except that this permission
notice may be stated in a translation approved by the author.

This manual has quoted from SRFI-6 (Basic String Ports), which is Copyright (C)
William D Clinger (1999). All Rights Reserved.

This manual has quoted from SRFI-8 (receive: Binding to multiple values), which is
Copyright (C) John David Stone (1999). All Rights Reserved.

This manual has quoted from SRFI-9 (Defining Record Types) which is Copyright (C)
Richard Kelsey (1999). All Rights Reserved.

This manual has quoted from SRFI-11 (Syntax for receiving multiple values), which is
Copyright (C) Lars T. Hansen (1999). All Rights Reserved.

This manual has quoted from SRFI-25 (Multi-dimensional Array Primitives), which is
Copyright (C) Jussi Piitulainen (2001). All Rights Reserved.

This manual has quoted from SRFI-26 (Notation for Specializing Parameters without
Currying), which is Copyright (C) Sebastian Egner (2002). All Rights Reserved.

The following notice applies to SRFI-6, SRFI-8, SRFI-9, SRFI-11, SRFI-25, and SRFI-
26, which are quoted in this manual, but it does not apply to the manual as a whole:

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the Scheme Request For Imple-
mentation process or editors, except as needed for the purpose of developing
SRFIs in which case the procedures for copyrights defined in the SRFI pro-
cess must be followed, or as required to translate it into languages other than
English.

Index

#
#!eof . 20

#!key . 20

Index 81

#!null . 20

#!optional . 20

#!rest . 20

#!void . 20

<
<character> . 50

<complex> . 49

<f32vector> . 31

<f64vector> . 31

<input-port> . 50

<integer> . 49

<keyword> . 49

<list> . 50

<number> . 49

<object> . 49

<output-port> . 50

<pair> . 50

<procedure> . 50

<quantity> . 49

<rational> . 49

<real> . 49

<s16vector> . 30

<s32vector> . 30

<s64vector> . 30

<s8vector> . 30

<string> . 50

<String> . 50

<symbol> . 49

<u16vector> . 30

<u32vector> . 30

<u64vector> . 30

<u8vector> . 30

<vector> . 50

A
apply . 21

arithmetic-shift . 26

array . 28

array-end . 28

array-rank . 28

array-ref . 28

array-set! . 29

array-start . 28

array? . 27

as . 39

as-xml . 72

ash . 26

B
base-uri . 36

bit-extract . 26

C
call-with-input-string . 42

call-with-output-string . 42

call-with-values . 18

catch . 33

class-methods . 58

command-line-arguments . 38

command-parse . 38

compile-file . 13

cond-expand . 17

constant-fold . 21

copy-file . 41

create-directory . 41

current-error-port . 41

current-servlet . 74

current-servlet-config . 74

current-servlet-context . 74

cut . 23

cute . 24

D
default-prompter . 42

define . 51

define-alias . 35

define-base-unit . 25

define-class . 59

define-constant . 62

define-namespace . 63

define-private . 62

define-procedure . 22

define-record-type . 51

define-simple-class . 59

define-syntax . 17

define-unit . 25

define-variable . 63

defmacro . 17

delete-file . 40

dynamic-wind . 34

E
environment-bound? . 36

error . 34

error-response . 76

eval . 36

exit . 38

Index 82

F
f32vector . 31

f32vector->list . 32

f32vector-length . 32

f32vector-ref . 32

f32vector-set! . 32

f32vector? . 31

f64vector . 31

f64vector->list . 32

f64vector-length . 32

f64vector-ref . 32

f64vector-set! . 32

f64vector? . 31

field . 58

file-directory? . 40

file-exists? . 40

file-readable? . 40

file-writable? . 40

fluid-let . 36

force . 37

force-output . 42

format . 44

future . 37

G
gentemp . 17

get-output-string . 42

H
home-directory . 38

I
input-port-column-number 43

input-port-line-number . 43

input-port-prompter . 42

input-port-read-state . 43

instance? . 39

integer-length . 26

interaction-environment . 36

invoke . 57

invoke-special . 57

invoke-static . 56

K
keyword->string . 21

keyword? . 20

L
let . 51

let* . 51

let*-values . 19

let-values . 18

letrec . 51

list->f32vector . 33

list->f64vector . 33

list->s16vector . 33

list->s32vector . 33

list->s64vector . 33

list->s8vector . 33

list->u16vector . 33

list->u32vector . 33

list->u64vector . 33

list->u8vector . 33

load . 36

load-relative . 36

location . 35

logand . 25

logbit? . 26

logcount . 26

logior . 26

lognot . 26

logop . 26

logtest . 26

logxor . 26

M
make . 55

make-array . 28

make-attribute . 72

make-element . 71

make-f32vector . 31

make-f64vector . 31

make-procedure . 22

make-process . 37

make-quantity . 25

make-record-type . 53

make-s16vector . 31

make-s32vector . 31

make-s64vector . 31

make-s8vector . 31

make-temporary-file . 41

make-u16vector . 31

make-u32vector . 31

make-u64vector . 31

make-u8vector . 31

module-compile-options . 15

module-export . 62

module-extends . 64

module-implements . 64

Index 83

module-name . 63

module-static . 64, 65

modulo . 25

N
null-environment . 36

O
object . 61

open-input-string . 41

open-output-string . 41

options . 8

P
parse-format . 44

port-char-encoding . 43

port-column . 42

port-line . 42

primitive-array-get . 67

primitive-array-length . 67

primitive-array-new . 67

primitive-array-set . 67

primitive-constructor . 67

primitive-get-field . 68

primitive-get-static . 68

primitive-interface-method 68

primitive-set-field . 68

primitive-set-static . 68

primitive-static-method . 67

primitive-throw . 34

primitive-virtual-method 67

procedure-property . 21

Q
quantity->number . 25

quantity->unit . 25

quantity? . 25

quotient . 25

R
read-line . 41

receive . 19

record-accessor . 53

record-constructor . 53

record-modifier . 53

record-predicate . 53

record-type-descriptor . 53

record-type-field-names . 54

record-type-name . 54

record? . 53

remainder . 25

rename-file . 41

request-method . 75

request-path-info . 75

request-path-translated . 75

request-query-string . 75

request-uri . 75

request-url . 75

require . 65

response-content-type . 76

response-header . 75

response-status . 76

reverse! . 27

S
s16vector . 31

s16vector->list . 32

s16vector-length . 32

s16vector-ref . 32

s16vector-set! . 32

s16vector? . 31

s32vector . 31

s32vector->list . 32

s32vector-length . 32

s32vector-ref . 32

s32vector-set! . 32

s32vector? . 31

s64vector . 31

s64vector->list . 32

s64vector-length . 32

s64vector-ref . 32

s64vector-set! . 32

s64vector? . 31

s8vector . 31

s8vector->list . 32

s8vector-length . 31

s8vector-ref . 32

s8vector-set! . 32

s8vector? . 31

scheme-implementation-version 38

scheme-report-environment 36

scheme-window . 38

Scheme.eval . 71

Scheme.registerEnvironment 71

servlet-context-realpath 74

set-input-port-line-number! 43

set-input-port-prompter! 42

set-port-line! . 43

set-procedure-property! . 21

setter . 35

Index 84

shape . 28

share-array . 29

sleep . 37

slot-ref . 58

slot-set! . 58

static-field . 58

string->keyword . 21

string-capitalize . 27

string-capitalize! . 27

string-downcase . 27

string-downcase! . 27

string-upcase . 27

string-upcase! . 27

symbol-read-case . 43

synchronized . 39

system . 37

system-tmpdir . 41

T
this . 51

throw . 33

tokenize-string-to-string-array 38

trace . 37

try-catch . 34

try-finally . 34

U
u16vector . 31

u16vector->list . 32

u16vector-length . 32

u16vector-ref . 32

u16vector-set! . 32

u16vector? . 31

u32vector . 31

u32vector->list . 32

u32vector-length . 32

u32vector-ref . 32

u32vector-set! . 32

u32vector? . 31

u64vector . 31

u64vector->list . 32

u64vector-length . 32

u64vector-ref . 32

u64vector-set! . 32

u64vector? . 31

u8vector . 31

u8vector->list . 32

u8vector-length . 32

u8vector-ref . 32

u8vector-set! . 32

u8vector? . 31

unescaped-data . 75

unless . 38

untrace . 37

V
values . 18

values-append . 19

vector-append . 38

W
when . 38

with-compile-options . 15

