
 

comp.sys

 

TCP/IP

 

directory server

 

World Wide Web

 

ww

 

Personal

IStore

 

Proxy

 

merchant system

 

HTML

 

http://www

 

Internet

 

server

server

 

security

 

news

URL

 

HTML

mail

 

Inter

navigator

 

community system

electronic commerce

 

JavaScript

 

Proxy

 

Mozilla

 

certificate

 

Publishing

Publishing

 
Chat

 

encryption

secure sockets layer

 

SSL

 

Developer’s Handbook

Netscape LivePayment
Version 1.0



Netscape Communications Corporation (“Netscape”) and its licensors retain all ownership rights to the software 
programs offered by Netscape (referred to herein as “Software”) and related documentation. Use of the Software and 
related documentation is governed by the license agreement accompanying the Software and applicable copyright 
law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or 
compilation works is prohibited and constitutes a punishable violation of the law. Netscape may revise this 
documentation from time to time without notice.

THIS DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL 
NETSCAPE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION 
OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, 
ARISING FROM ANY ERROR IN THIS DOCUMENTATION.

The Software and documentation are copyright ” 1995-1996 Netscape Communications Corporation. All rights 
reserved.

Portions of this product are based upon copyrighted materials of Informix Software, Inc. The Software contains 
encryption software from RSA Data Security, Inc. Copyright © 1994, 1995 RSA Data Security, Inc.  

Netscape, Netscape Communications, the Netscape Communications Corporation Logo, Netscape LivePayment, and 
other Netscape product names are trademarks of Netscape Communications Corporation. These trademarks may be 
registered in other countries. Other product or brand names are trademarks of their respective owners.

Any provision of the Software to the U.S. Government is with restricted rights as described in the license agreement 
accompanying the Software.

The downloading, export or reexport of the Software or any underlying information or technology must be in full 
compliance with all United States and other applicable laws and regulations as further described in the license 
agreement accompanying the Software.

 

The Team:

Engineering: Choong Chew, Rich Coulter, Jane Ha, Terry Hayes, Jo-ning Ta, Nasrul Islam, Abhinendan Prateek, 
Roscoe Shih, Ed Andrews
Release Engineering: Patrick Marion
Marketing: Basil Hashem, Ammiel Kamon
Publications: Bill Branca, Ann Hillesland, Cindy Hall, Paul Ferlito, Meera Holla
Quality Assurance: Robert Bruce, Dan Findley, Peeter Pirn, Colin Wiel, Rick Yamaura 
Technical Support: Fanny Wu, Dan Yang

Version 1.0

©Netscape Communications Corporation 1996
All Rights Reserved

Printed in USA
97  96  95    10  9  8  7  6  5  4  3  2  1

Netscape Communications Corporation  501 East Middlefield Road, Mountain View, CA 94043

 

Recycled and Recyclable Paper



 

Contents

 

   i

Contents

 

About this book

 

.................................................................................................7

Before you begin ....................................................................................................7

Audience .................................................................................................................7

Organization............................................................................................................8

Conventions ..........................................................................................................10

 

Part 1  LivePayment basics 

 

Chapter 1 Introducing Netscape LivePayment

 

...................................13

What is Netscape LivePayment? ...........................................................................14

Processing credit cards with Netscape LivePayment ..........................................16

Developing a payment processing application...................................................18

Modifying the Starter Application Set .............................................................19

Creating your own application using LiveWire ..............................................19

Creating your own application using cpcmd .................................................20

Certifying your application ..............................................................................20

Data storage ..........................................................................................................20

Applying for service from your bank ..................................................................21

Security ..................................................................................................................21

Further reading on security .............................................................................23

 

Chapter 2 Setting up Netscape LivePayment

 

.......................................25

Post-installation procedures .................................................................................26

Setting up a relationship with a bank card acquirer...........................................27

Changing LivePayment operating modes ............................................................28

Starting up in loopback mode.........................................................................29

Changing from loopback mode to test mode ................................................29

Changing from test mode to production mode..............................................30



ii   Netscape LivePayment Developer’s Handbook

Accessing the Netscape LivePayment page ........................................................ 30

Configuring the LivePayment parameters ........................................................... 32

Configuring the card processor parameters........................................................ 33

Domain Name Service (DNS) aliasing............................................................ 35

Configuring security ............................................................................................. 35

Using the server’s certificate ........................................................................... 36

Using a separate certificate for LivePayment ................................................. 38

Administering Netscape LivePayment ................................................................. 45

Starting the card processor.............................................................................. 46

Checking the gateway connection ................................................................. 46

Stopping the card processor ........................................................................... 47

Administering LiveWire........................................................................................ 47

Accessing the Server Selector .............................................................................. 49

Chapter 3 Payment application concepts ............................................ 51

Credit card transactions........................................................................................ 52

Creating a slip .................................................................................................. 52

Authorizing a purchase ................................................................................... 53

Starting a new batch........................................................................................ 53

Capturing a purchase ...................................................................................... 54

Issuing credit for a purchase........................................................................... 54

Settling a batch ................................................................................................ 55

Business rules for credit card applications ......................................................... 55

Authorize.......................................................................................................... 55

Capture............................................................................................................. 56

Credit ................................................................................................................ 56

Settle ................................................................................................................. 57

Designing your database ..................................................................................... 57

Using batches ....................................................................................................... 58

Using batches in an application ..................................................................... 58

Order of transactions....................................................................................... 60

Storing Information from the acquirer ................................................................ 64

Results of authorize ......................................................................................... 64

Batch number .................................................................................................. 65



Contents   iii

Maintaining the payment and batch states ......................................................... 65

Why is the state needed?................................................................................. 66

Keeping track of the payment states .............................................................. 66

Keeping track of the batch states ................................................................... 67

Idempotent transactions .................................................................................. 68

Part 2  Using the LivePayment Starter Application Set 
Chapter 4 Running the Starter Application Set.................................. 73

The application files............................................................................................. 74

Before you begin.................................................................................................. 75

Prerequisites ..................................................................................................... 76

Configuration ................................................................................................... 76

Starting the application ........................................................................................ 76

Making a purchase ............................................................................................... 77

Using the administration interface....................................................................... 77

Viewing uncaptured authorizations .................................................................... 78

Viewing transactions in the current batch...................................................... 78

Cancelling a transaction .................................................................................. 78

Crediting a transaction by batch ..................................................................... 79

Manually crediting a transaction ..................................................................... 79

Viewing previous transactions by batch......................................................... 80

Settling the current batch ................................................................................ 80

Searching for a transaction.............................................................................. 80

Chapter 5 Reviewing the application code .......................................... 83

The credit card processing functions .................................................................. 84

The LiveWire objects............................................................................................ 84

The database object......................................................................................... 85

The project object ............................................................................................ 86

The request object ........................................................................................... 86

The LivePayment objects ..................................................................................... 86

The Merchant object ........................................................................................ 87

The Processor object ....................................................................................... 87

The Slip object ................................................................................................. 87



iv   Netscape LivePayment Developer’s Handbook

The Batch object.............................................................................................. 87

The Terminal object ........................................................................................ 88

Authorizing a purchase........................................................................................ 88

Generating a slip ............................................................................................. 88

Encoding a slip ................................................................................................ 89

Authorizing a transaction ................................................................................ 90

Capturing a transaction ........................................................................................ 91

Crediting a transaction ......................................................................................... 92

Settling a batch ..................................................................................................... 92

Chapter 6 Modifying the Starter Application Set .............................. 95

Preparing to modify LPStart................................................................................. 96

Modifying the Starter Application Set.................................................................. 96

Modifying LPStart............................................................................................. 96

Chapter 7 Netscape LivePayment Starter Application Set Refer-
ence ................................................................................................................... 103

Directory Structure ............................................................................................. 104

LPStart HTML pages ........................................................................................... 105

LPAdmin HTML pages ....................................................................................... 105

LPAdmin Transaction Libraries .......................................................................... 107

LPAdmin Merchant Libraries.............................................................................. 108

Database schema................................................................................................ 109

Database tables................................................................................................... 110

Functions ............................................................................................................ 114

Batch states......................................................................................................... 138

Transaction states ............................................................................................... 138

Part 3  Creating a LivePayment application from the ground up 
Chapter 8 Using the LivePayment objects ......................................... 143

LivePayment objects overview .......................................................................... 144

Developing with LivePayment........................................................................... 144

Embedding LivePayment JavaScript in HTML.............................................. 146

Registering LivePayment objects in LiveWire............................................... 146

Creating instances of LivePayment objects .................................................. 148



Contents   v

Using LivePayment properties ...................................................................... 148

Using the default values from the LivePayment configuration ................... 149

Using error status methods ........................................................................... 150

Getting the LivePayment version in LiveWire .............................................. 152

Using LivePayment objects to process payments ............................................. 152

Creating Merchant and Terminal objects...................................................... 152

Creating a Processor object ........................................................................... 154

Creating a Batch object ................................................................................. 155

Creating a Slip object..................................................................................... 157

The order description and the merchant order description........................ 160

Encoding and decoding a Slip object ........................................................... 160

Creating a PayEvent object............................................................................ 162

Authorizing a payment .................................................................................. 164

Capturing a payment ..................................................................................... 165

Crediting an account ..................................................................................... 166

Settling payments........................................................................................... 166

Using the LPAuthOnly sample application ....................................................... 167

The LPAuthOnly files..................................................................................... 167

Running LPAuthOnly..................................................................................... 168

The sample code ........................................................................................... 170

Chapter 9 LivePayment object reference ........................................... 173

Part 4  Creating an application using the cpcmd utility 
Chapter 10 Using the cpcmd utility...................................................... 209

Overview of cpcmd............................................................................................ 210

Transaction flow ............................................................................................ 210

Default configuration..................................................................................... 211

Data storage ................................................................................................... 212

Return values, output, and errors ................................................................. 212

Using TraceFile and TraceLevel......................................................................... 213

Command reference........................................................................................... 214

Authorize........................................................................................................ 214

Capture ........................................................................................................... 217



vi   Netscape LivePayment Developer’s Handbook

CreateSlip ....................................................................................................... 219

Credit .............................................................................................................. 221

GetCurrentBatch ............................................................................................ 223

SettleBatch...................................................................................................... 223

Part 5  Appendices 
Appendix A Troubleshooting LivePayment ...................................... 229

Troubleshooting overview................................................................................. 230

Resolving card processor error messages ......................................................... 230

Table notes..................................................................................................... 241

Verifying the configuration................................................................................ 242

Testing the gateway connection........................................................................ 243

Using traceroute and telnet ............................................................................... 243

Using traceroute............................................................................................. 244

Using telnet .................................................................................................... 245

Checking the card processor log file ................................................................ 245

Technical support............................................................................................... 247

Appendix B Netscape-supported bank card acquirers .................. 249

First Data Corporation (FDC) ............................................................................ 249

Establishing a credit card business agreement ............................................ 249

Obtaining test processing parameters .......................................................... 250

Getting information about your certificate................................................... 251

Certifying your application............................................................................ 251

Index................................................................................................................. 253



About this book   7

About this book

his 

 

Handbook describes the operations of Netscape 
LivePayment, Version 1.0, from Netscape Communications 
Corporation. 

This Introduction discusses the intended audience, the organi-
zation, and provides a listing of typographic conventions used in 
this document. If you spend a few minutes looking through the 

Introduction before reading the rest of the Handbook, you will be able to 
utilize the Handbook more effectively.

Before you begin
This manual is written with the assumption that you understand the operating 
system on which you are running this software. 

You do not need to be an expert on the Internet, the World Wide Web, or 
HTML, but you will find it helps to know the basics of these technologies.

This manual assumes that you have read the Netscape LiveWire documentation 
and the documentation for your Netscape server.

Audience
This manual is written for developers, merchants using LivePayment for 
commerce on the Internet, and for administrators of the commerce sites. The 
web site developers should have some programming experience with a 
programming language such as Pascal, C, or Visual Basic. 

T



Organization

8   Netscape LivePayment Developer’s Handbook

Organization
This section presents a brief summary each chapter making up this Handbook.

Part 1: LivePayment basics

Chapter 1: Introducing Netscape LivePayment

This chapter provides a brief introduction to the Netscape LivePayment system. 
It includes an overview of LivePayment concepts, and the basic architecture of 
the LivePayment payment system.

Chapter 2: Setting up Netscape LivePayment

This chapter contains information on setting up Netscape LivePayment after it 
has been installed. It contains information on setting up a relationship with a 
bank card acquirer, configuring security, and administering Netscape 
LivePayment. 

Chapter 3: Payment application concepts

This chapter describes the transaction flow for processing credit cards and other 
information about developing with LivePayment

Part 2: Using the LivePayment Starter Application 
Set

Chapter 4: Running the Starter Application Set

This chapter describes running the Starter Application Set, from the viewpoint 
of a customer running the applications and a merchant administering the appli-
cations.

Chapter 5: Reviewing the application code

This chapter describes the Starter Application Set’s code for credit card transac-
tions.



About this book   9

Organization

Chapter 6: Modifying the Starter Application Set

This chapter describes modifying the Starter Application Set to create your own 
LivePayment application.

Chapter 7: Netscape LivePayment Starter Application Set 
Reference

This chapter contains reference information on the Starter Application Set’s 
functions and database fields.

Part 3: Creating a LivePayment application from the 
ground up

Chapter 8: Using the LivePayment objects

This chapter provides an overview and description of the LivePayment objects. 

Chapter 9: LivePayment object reference

This chapter contains reference information on each LivePayment object, 
property, and method.

Part 4: Creating an application using the cpcmd 
utility

Chapter 10: Using the cpcmd utility

This chapter contains information on the cpcmd utility.

Part 5: Appendices

Appendix A: Troubleshooting LivePayment

This chapter contains information on troubleshooting the connection between 
the card processor and the bank card acquirer.



Conventions

10   Netscape LivePayment Developer’s Handbook

Appendix B: Netscape-supported bank card acquirers

This chapter contains information on Netscape-supported bank card acquirers 
and how to contact them.

Conventions
A number of typographic conventions are used throughout this manual to help 
you recognize special terms and instructions. These conventions are summa-
rized in the table below.

Convention Meaning Example

boldface items on the screen Click the OK button to configure the card proces-
sor.

names of keys Press Enter to clear the message.

methods, functions, objects 
and properties

The example uses the bad method to test for an 
error.

boldface
numbered
steps

higher level descriptions of 
tasks you perform (more 
detailed instructions follow)

1. Enter the group information.
Enter the name in the Group Name field, and a 
short description in the Description field.

italics key words, such as terms 
that are defined in the text

If the transaction is authorized, a capture takes 
place.

names of books For more information, see the LiveWire Developer’s 
Guide.

variables (placeholders)

 

terminalObject = new 
Terminal("terminalNumber")

courier 
font

command line input or 
output

Change to the LivePayment configuration direc-
tory.

install_dir/admin/config

text file content, such as 
HTML templates and con-
figuration files

<HTML>
<TITLE>Netscape LivePayment</TITLE>

code samples mer = new Merchant();
term = new Terminal();



 

Part 1, LivePayment basics   

 

11

 
1

 

LivePayment basics

 

• Introducing Netscape 
LivePayment

• Setting up Netscape 
LivePayment

• Payment application concepts



12   Netscape LivePayment Developer’s Handbook



Chapter 1, Introducing Netscape LivePayment   13

C h a p t e r

1

 

Introducing Netscape LivePayment

 

this chapter provides a basic description and conceptual overview of 
Netscape LivePayment.

This chapter has the following sections:

• What is Netscape LivePayment?

• Processing credit cards with Netscape LivePayment

• Applying for service from your bank

• Security

T



What is Netscape LivePayment?

14   Netscape LivePayment Developer’s Handbook

What is Netscape LivePayment?
Netscape LivePayment provides a convenient way for you to create a Web site 
that executes financial transactions over the Internet. A system using 
LivePayment consists of:

• A Netscape Enterprise Server (Web server)

• Netscape LiveWire (a development environment) 

• A relational database (an Informix database is included with LiveWire Pro)

• A card processor which routes financial transaction information to banks 
over the Internet and receives replies

• A Starter Application Set which you can modify to create your own payment 
application 

• A set of LiveWire objects for credit card processing

• A utility for credit card processing

These building blocks make it simple to set up a Web site that accepts credit 
card payments. These components make it easy to customize your site using 
server-side JavaScript.

Figure 1.1 illustrates Netscape’s payment system.



Chapter 1, Introducing Netscape LivePayment   15

What is Netscape LivePayment?

Figure 1.1  Netscape Payment System

The customer, using a browser, accesses an online form. The customer enters 
payment information into it. Using SSL security, the browser communicates the 
information to the HTTP server, the Netscape server that runs the Web site. 
From the server, the transaction information goes either to a LiveWire appli-
cation, or to an interface that runs the cpcmd (card processor command) 
utility.

LiveWire is a Netscape development environment which includes authoring, 
scripting, and database access capabilities. The LiveWire scripting language is 
called JavaScript. JavaScript is an easy, Java-compatible scripting language 
provided with LiveWire. You can create a LiveWire application that processes 
payments either by modifying the Starter Application Set shipped with the 
product, or by creating your own application using the LivePayment objects 
that perform credit card transactions.

LivePayment also contains a utility (cpcmd), which has several commands that 
perform credit card transactions. The utility is invoked in one of the following 
ways:

• Directly from the operating system shell (for example Solaris or Windows 
NT).

• By an automated script. 

 

Internet

Internet

Merchant Web Server

HTTP Server

LiveWire
LivePayment

Application 

LivePayment

JavaScript


Objects

Card

Processor

Banking

Gateway

<HTML tag>

 

</HTMLtag>

<HTML tag>

 

</HTMLtag>


<SERVER>

p.authorize (                     )

-

-p.capture (                       )

- 

-

</SERVER>


<HTML tag>

 

</HTMLtag>


Customer


LivePayment

LiveWire 

Objects


cpcmd 

Utility


Relational

DB



Processing credit cards with Netscape LivePayment

16   Netscape LivePayment Developer’s Handbook

• Indirectly by a Common Gateway Interface (CGI), a standard mechanism 
that an HTTP server uses to execute programs external to the Web server 
itself. 

Your LivePayment application or the cpcmd utility sends transaction infor-
mation to the card processor, a continuously operating process which routes 
transaction information through the Internet to the banking network. The card 
processor implements SSL security and message transmission. 

When the card processor routes information through the Internet, it uses the 
bank card gateway, which is located at the banking institution. Transaction 
information goes through the gateway to the bank card acquirer (a bank 
authorized to accept financial transactions on behalf of a merchant). The 
acquirer processes transactions, routing responses back to LivePayment. The 
response codes are available within the LiveWire script or program that initiated 
the payment transaction.

A payment-enabled Web site also includes an administration server, which the 
system administrator uses to install and administer LivePayment, LiveWire, and 
the HTTP server.

Processing credit cards with Netscape 
LivePayment

Making purchases over the Internet involves three parties: the consumer, or 
credit card holder, the merchant who is offering products or services for sale, 
and the financial institution that processes credit card payments, known as the 
acquirer. Indirectly, there are two other parties involved: the bank that issued 
the consumer’s bank card, and the merchant bank, where the merchant’s 
account resides. 

• The consumer interacts with the merchant’s Web site using a Web 
browser, such as Netscape Navigator. In order to make credit card 
purchases, the consumer must obtain a bank card from an issuer bank, and 
provide bank card information to the merchant’s application when he or 
she decides to make a purchase.



Chapter 1, Introducing Netscape LivePayment   17

Processing credit cards with Netscape LivePayment

• The merchant develops the application that makes goods and services 
available for sale. In order to accept credit card payments, the merchant 
must have an established relationship with a merchant bank and an 
acquirer. 

• The acquirer is the financial institution that operates the payment gateway 
used to accept transactions from merchants on the Internet, on behalf of 
merchant banks. The acquirer and the merchant bank can be the same insti-
tution, or they can be separate institutions.

• The issuer bank is the bank that issued the bank card to the consumer.

• The merchant bank is the bank where the merchant’s account is estab-
lished. The merchant bank may also function as the acquirer, or it may 
designate another financial institution to function as acquirer on its behalf.

The following figure shows LivePayment’s credit card transaction process.

Figure 1.2  Credit Card Transactions Using LivePayment

1. When the consumer decides to buy something, the Web application 
prompts the consumer for credit card information, usually along with other 
information such as shipping address.

2. The consumer enters payment information into an SSL-secured form. The 
payment information is sent to the merchant protected by SSL. 

3. The merchant creates a slip (an encrypted, electronic analogy to a paper 
credit card slip) and sends the slip to the credit card acquirer for authori-
zation via the LivePayment card processor. The information on the slip is 
used for the authorize, capture, and credit transactions.

Issuer Bank

Merchant Bank

Get consumer funds

Put funds

AcquirerMerchantConsumer

Settle

Accepted 

or refused

Confirm 

transaction

Payment

instructions

Authorize,

capture



Developing a payment processing application

18   Netscape LivePayment Developer’s Handbook

4. The acquirer responds either with an authorization for a certain amount of 
money, or refuses the transaction.

5. Assuming the transaction is authorized, a capture is the next step. The 
capture takes the information from the successful authorization and charges 
the authorized amount of money to the credit card.

Because the merchant should not capture until the ordered goods can be 
shipped, there may be a time lag between the authorization and the 
capture. 

6. If a customer returns goods or cancels an order, the merchant generates a 
credit for the customer using the information on the original record of the 
purchase.

7. The final step is to settle the transactions between the merchant and the 
acquirer. Captures and credits usually accumulate into a batch and are 
settled as a group. This step effectively confirms all the transactions. 

The merchant and the acquirer compare the total sales amounts and 
number of sales transactions, and total credit amounts and number of credit 
transactions. Any discrepancies are worked out between the merchant and 
the acquirer. Settling can occur after every completed transaction, or as a 
group. This group of transactions is called a batch.

8. When the transactions are settled, the acquirer begins the transfer of money 
from the consumer accounts at various issuer banks to the merchant’s 
account at the merchant bank. 

Developing a payment processing application
LivePayment offers you three ways to develop a payment processing appli-
cation:

• Modify the Starter Application Set provided with LivePayment.

• Create your own application with the LivePayment objects.

• Create your own application using the cpcmd utility.



Chapter 1, Introducing Netscape LivePayment   19

Developing a payment processing application

You also have the option of combining these methods. For example, you might 
choose to have most of your application run in LiveWire, but use the utility to 
start and settle batches, since the utility can be more easily automated.

Modifying the Starter Application Set

LivePayment includes a Starter Application Set you can modify to quickly create 
your online commerce application. The Starter Application Set contains 
functions you can use to tailor the application to your business. 

Before modifying the Starter Application Set, you should understand how card 
processing applications work. For more information, see Chapter 3, “Payment 
application concepts”. 

For information on the Starter Application Set and how to modify it, see Part 2, 
“Using the LivePayment Starter Application Set.”

Creating your own application using 
LiveWire

In most cases, the Starter Application Set should be able to get you up in 
running with little modification. However, merchants with special business 
requirements (for example, support for multiple merchant environments) may 
want to create their own applications. Creating your own credit card appli-
cation requires a thorough knowledge of credit card processing and how the 
LivePayment objects work. In addition, the Starter Application Set provides an 
example for you to look at. The following chapters will help you create your 
own application:

• Chapter 3, “Payment application concepts”

• Chapter 8, “Using the LivePayment objects”

• Chapter 9, “LivePayment object reference”

You should also read the LiveWire Developer’s Guide for instruction on devel-
oping with LiveWire.



Data storage

20   Netscape LivePayment Developer’s Handbook

Creating your own application using 
cpcmd

You can also create your own application using the cpcmd utility provided 
with LivePayment. The utility has several commands that you can use in a CGI 
program or operating system script to create a credit card processing appli-
cation. It is very important that you understand the basics of setting up a credit 
card processing system. Before developing your application, be sure to read the 
following chapters:

• Chapter 3, “Payment application concepts”. Note that cpcmd (which does 
not encapsulate a relational database) requires you to manage your trans-
action states. Pay special attention to the information on transaction states 
in this chapter. 

• Chapter 10, “Using the cpcmd utility”.

Certifying your application

After you have created your own application or modified the Starter Application 
Set, you may need to get it certified. Certification assures that your application 
meets credit card processing standards. You need your application certified 
under the following circumstances:

• If you create an application from scratch (without using the Starter Appli-
cation Set). 

• If you modify the Starter Application Set (LPStart and LPAdmin) by changing 
the .js files in the readonly_lib directory.

See “Certifying your application” on page 251 for more information.

Data storage
You can use a range of relational databases or flat file systems to store infor-
mation from your LivePayment application. The sample application has been 
written to save transaction information into a relational database which you can 
use for your own application.



Chapter 1, Introducing Netscape LivePayment   21

Applying for service from your bank

If you use LiveWire’s database connectivity library you can also hook 
LivePayment into a variety of other popular relational databases. For more 
information on LiveWire and the databases it supports, see the LiveWire 
documentation.

Applying for service from your bank
In order to process payment transactions, you need to set up a relationship 
with a bank card acquirer. For more information “Setting up a relationship with 
a bank card acquirer” on page 27.

Security
Credit card information is protected a number of ways as it travels through the 
system. It must be protected when it travels from the customer to the merchant 
over the Internet, at the merchant’s site, and when it travels from the merchant 
to the acquirer. The following figure illustrates this process:

Figure 1.3  Credit Card Information Security

When credit card information travels over the Internet, it is protected by a 
secure transfer protocol—Secure Sockets Layer (SSL). The customer must use a 
Web browser such as Netscape Navigator that supports SSL to connect to the 
merchant’s Web site. SSL protects the information as it travels from the 
customer to the merchant’s Web site. The merchant must be running a secure 
server in order to ensure private communication.

AcquirerMerchantConsumer
SSL


Certificates

Public/Private Keys

SSL


Slip Encryption




Security

22   Netscape LivePayment Developer’s Handbook

Once the merchant receives the credit card number the merchant saves it into a 
slip and encodes the information. After the slip is encoded, most of the infor-
mation on the slip (including the credit card number) is unreadable by the 
merchant. The merchant can store the encrypted slip in the database so there is 
a record of the transaction, but the sensitive information is shielded.

From the merchant’s site, the encrypted credit card information travels over the 
Internet to the acquirer. The transfer is protected by SSL using mutual authenti-
cation to ensure that the acquirer knows the merchant company is who they 
claim to be, and the merchant knows that the acquirer really is the acquirer.

Identity is proved by security certificates, which are issued by a known Certif-
icate Authority. The Certificate Authority (CA) verifies the identity of the 
merchant and the acquirer and establishes a hierarchy of trust. The authenti-
cation mechanism, which is embedded in SSL, uses public/private key cryptog-
raphy. 

Public/private key cryptography has two keys, a public key and a private 
key.The public key is publicized as widely as possible. The private key is kept 
completely secret. The merchant sends information to the acquirer encrypted 
using the acquirer’s public key. The acquirer decrypts it using the private key. 
No one but the acquirer can decrypt the information, since only the acquirer 
has the private key. 

When the acquirer receives the information, it has been protected by SSL and 
slip encryption. SSL provides the authentication, privacy and message integrity 
required. Replies from the acquirer to the merchant are also sent using SSL and 
therefore also achieve the authentication, privacy and messages integrity 
required. The acquirer encrypts the message using the merchant’s public key 
and so only the merchant can decrypt it. Replies from the merchant to the 
customer are protected by SSL.

Netscape’s SSL uses cryptographic algorithms developed by RSA Data Security.

Before you can transfer payment information across the Internet with 
LivePayment, you must have a security certificate, which is issued from a Certif-
icate Authority. For more information, see Chapter 2, “Setting up Netscape 
LivePayment”.



Chapter 1, Introducing Netscape LivePayment   23

Security

Further reading on security

For information about securing your server, and for a discussion of security 
concepts, see your server documentation.

In addition, the following resources help you begin learning and understanding 
issues related to security. Some are platform-specific:

• http://home.netscape.com/info/security-doc.html

• http://www.rsa.com/

• http://www.verisign.com/

• http://www.cis.ohio-state.edu/hypertext/faq/usenet/security-faq/faq.html 

• Applied Cryptography, Second Edition: Protocols, Algorithms, and Source 
Code in C. Bruce Schneier. John Wiley & Sons, Inc., 1996.

Usenet newsgroups that regularly discuss computer security include: 
comp.security.misc, comp.security.unix, and alt.security.



Security

24   Netscape LivePayment Developer’s Handbook



Chapter 2, Setting up Netscape LivePayment   25

C h a p t e r

2

 

Setting up Netscape LivePayment

 

his chapter contains information on setting up Netscape LivePayment 
after it has been installed. It contains information on setting up a 

relationship with a bank card acquirer, configuring Netscape LivePayment, 
configuring security, and administering Netscape LivePayment. 

This chapter contains the following sections:

• Post-installation procedures

• Changing LivePayment operating modes

• Accessing the Netscape LivePayment page

• Configuring the LivePayment parameters

• Configuring the card processor parameters

• Configuring security

• Administering Netscape LivePayment

• Administering LiveWire

T



Post-installation procedures

26   Netscape LivePayment Developer’s Handbook

Post-installation procedures
When you install LivePayment, you install the default configuration. Using this 
configuration you can start developing a credit card payment application in 
loopback mode. However, in order to run “live” transactions, you need to 
follow these steps.

1. Apply for merchant authorization to a bank card acquirer.

2. Generate a key pair and apply for security certificate (if you want 
LivePayment to use a different key pair and certificate than your server).

3. Configure LivePayment.

4. Configure the card processor.

5. Install your security certificate, or if you are using your server’s certificate, 
set up LivePayment to use the server’s certificate.

6. Design your application. You can design your application by altering the 
Starter Application Set, by using the LivePayment objects, or by using the 
cpcmd utility.

7. Start the card processor.

8. Run your application in test mode.

9. Enter production mode.

It may take time to get authorization from a bank card acquirer to process 
transactions over the Internet. You should apply for it immediately after you 
install LivePayment. For more information, see “Setting up a relationship with a 
bank card acquirer” on page 27. If you need to apply for a security certificate 
from a certificate authority, you should also do that immediately. For more 
information, see “Configuring security” on page 35. 

While you are completing these two processes, you can begin developing your 
application using default values. For more information on starting to develop 
an application, see Chapter 3, “Payment application concepts”.



Chapter 2, Setting up Netscape LivePayment   27

Setting up a relationship with a bank card acquirer

Setting up a relationship with a bank card 
acquirer

Before you can process transactions with LivePayment you need to set up a 
relationship with a bank card acquirer. The bank card acquirer is a bank autho-
rized to accept credit card transactions on behalf of the merchant. The acquirer 
is a bridge between the merchant and the bank that issued the credit card. 

Your bank card acquirer needs to provide you with the following information: 

• Merchant number

• Terminal number

• Merchant source ID 

• Hostname of the bank card gateway 

• Port numbers of the bank card gateway

Netscape Communications can refer you to available acquirers set up to process 
your credit card transactions, but cannot guarantee your acceptance. Owning 
and using Netscape software does not guarantee you the privilege of 
conducting credit card business over the Internet. Your ability to accept credit 
cards as a form of payment is subject to the acquirer’s approval only.

If your business is handling credit card transactions, you are required to have 
MOTO (Mail Order/Telephone Order) approval through a Netscape supported 
acquirer. If Netscape does not support the acquirer that you are MOTO 
approved with, you cannot conduct automated credit card transactions.

You must set up a business agreement with an acquirer that includes arranging 
for the settlement of credit card purchases between your bank and your 
customer’s card issuing bank.

For a list of acquirers and how to contact them, see Appendix B, “Netscape-
supported bank card acquirers”.



Changing LivePayment operating modes

28   Netscape LivePayment Developer’s Handbook

Changing LivePayment operating modes
You can operate LivePayment in the following modes: loopback, test, and 
production. Loopback mode is the default mode when LivePayment is installed. 
It is for initial development purposes only. You cannot perform transactions 
through the bank card gateway in loopback mode. In test mode you test the 
gateway and your application with test values for the bank card gateway 
interface. No financial transactions are actually performed (no money is 
involved) but you can send test values to the acquirer and receive responses. 
Production mode is the “live” mode, in which you can perform actual payment 
transactions with real data. 

The modes have different merchant and terminal numbers, port numbers, and 
gateways. You need to get all these values from your acquirer.

The following table summarizes the differences between the modes:

Loopback Mode Test Mode Production Mode

Internet Access Not required Required Required

Card Processor Not running Running Running

Certificate Not required Required Required

Gateway Host Not required Test gateway 
from the acquirer, 
for example: 
ccgwt.card.net

Permanent gate-
way from the 
acquirer, for 
example: 
ccgw.card.net

Port Number Not required Available from 
your acquirer

Available from 
your acquirer.

Merchant Number 0000000000 Temporary num-
ber from acquirer

Permanent num-
ber from acquirer

Terminal Number 0000000000 Temporary num-
ber from acquirer

Permanent num-
ber from acquirer



Chapter 2, Setting up Netscape LivePayment   29

Changing LivePayment operating modes

Starting up in loopback mode

Loopback mode is the default mode when you install LivePayment. You do not 
need to configure LivePayment to run in this mode. The merchant and terminal 
numbers are set to 0000000000. The gateway host and port number are not set 
to default values.

Note: Loopback mode is for initial development ONLY. You must change to 
production mode before you can actually run credit card transactions. Also, 
note that the AVS response is a random response when you run in loopback 
mode. The random response allows you test for all possible responses.

Changing from loopback mode to test 
mode

When you install LivePayment initially, the installer automatically configures 
LivePayment to perform in loopback mode. To change from loopback to test, 
follow these steps:

1. Obtain your test merchant and terminal numbers from your acquirer.

2. Change the LivePayment parameter configuration to not use loopback 
mode. 

3. Update the LivePayment parameter configuration with the test values for the 
merchant number and the terminal number.

4. Update the card processor parameter configuration with the test values for 
the host and port number.

5. Configure security.

6. Start the card processor.

7. If you used a database in loopback mode (for example, if you ran the 
Starter Application Set) you need to clean that information out of your 
database before using test mode. You can also create a new database for 
running in test mode. Data produced in loopback mode cannot be settled 
in test mode.



Accessing the Netscape LivePayment page

30   Netscape LivePayment Developer’s Handbook

You use test mode to verify your application. You must test your application’s 
ability to perform the credit card transactions, check for errors, and send and 
receive information through the gateway.

Changing from test mode to production 
mode

When you have thoroughly tested your application, and are ready to move to 
production mode, follow these steps: 

1. Shut down the card processor.

2. Make sure the LivePayment parameter configuration is set to not use 
loopback mode. 

3. Update the card processor parameter configuration with the production 
values for the merchant number and the terminal number.

4. Update the card processor parameter configuration with the production 
values for the host and port number.

5. Restart the card processor.

In addition, when you change from test mode to production mode you might 
want to change the password in the file that’s used to encode and decode the 
slips. The password in the password file that is shipped with LivePayment is not 
unique, so you should change it. However, after you change the password, you 
cannot decode slips that were encoded with the old password. Choose your 
time to change the password carefully.

Accessing the Netscape LivePayment page 
To configure and administer Netscape LivePayment, access the Netscape 
LivePayment page. To access it, follow these steps.



Chapter 2, Setting up Netscape LivePayment   31

Accessing the Netscape LivePayment page

1. Click the LivePayment link from the Sever Selector page or enter the 
URL to the LivePayment page.

Access the Netscape LivePayment page through the Administration server. 
Use the URL http://server_name:PORT, and click the server ID under 
Netscape Livepayment.

Or, you can enter the full URL path into the browser. 

http://server_name:PORT/livepayment-ID/bin/index

where server_name is the name of your server, PORT is the port number of 
your administration server, and ID is the ID of your server.

2. Enter your login and password.

A pop-up box is displayed. Enter your server administration user login and 
password. 

The Netscape LivePayment page is displayed:

This page has two content frames. One is a menu of the LivePayment 
configuration and administration forms. The other frame displays the 
LivePayment forms themselves. By default, the Administer Card Processor 
form is displayed.

To return to the Server Selector page, click the Server Selector link.



Configuring the LivePayment parameters

32   Netscape LivePayment Developer’s Handbook

Configuring the LivePayment parameters
The LivePayment parameters are values that your application can pick up by 
default. They also contain information on your current LivePayment operating 
mode. The values you can set are:

• Merchant name

• Merchant number

• Terminal number

• Password file

In addition, you can also set whether or not you are using loopback mode.

To set these values, follow these steps.

1. Display the Configure LivePayment Parameters form.

From the Netscape LivePayment page, click the Configure LivePayment 
Parameters link to display the Configure LivePayment Parameters form.

2. Fill in the parameter configuration information.

You can enter values for the following parameters:

Merchant Name is the name of the merchant doing business on the 
Internet.



Chapter 2, Setting up Netscape LivePayment   33

Configuring the card processor parameters

Merchant Number is the merchant number given to you by your acquirer. 
This number can be the default value (all zeros) that is automatically set 
during installation, which means you are running in loopback mode. It can 
also be the temporary test number if you are running in test mode, or the 
permanent number if you are running in production mode.

Terminal Number is the terminal number given to you by your acquirer. 
This number can be the default value (all zeros) that is automatically set 
during installation, which means you are running in loopback mode. It can 
also be the temporary test number if you are running in test mode, or the 
permanent number if you are running in production mode.

Password File is the path to the file that contains the password that 
encodes and decodes the slips. LivePayment ships with a default value for 
the password. For security reasons you should change this password before 
entering production mode. However, once you change the password, you 
cannot decode any slips that were encoded with the previous password.

Use Loopback Mode designates whether or not you are running 
LivePayment in loopback mode. If the field is set to YES, you are running 
LivePayment in loopback mode. If it is set to NO, you are running in test or 
production mode.

3. Save your changes.

Press the OK button to save your changes.

Configuring the card processor parameters
The card processor requires parameters to transmit information across the 
Internet to the acquirer. Some of these fields are provided by the acquirer when 
you establish service. If you do not have these values yet, you can run in 
loopback mode. For more information on loopback mode, see “Changing 
LivePayment operating modes” on page 28.

To configure the card processor, follow these steps. 



Configuring the card processor parameters

34   Netscape LivePayment Developer’s Handbook

1. Display the Configure Card Processor Parameters form.

On the Netscape LivePayment page, click the Configure Card Processor 
Parameters link. The Configure Card Processor Parameters form is 
displayed.

2. Configure the card processor.

The fields on this form govern the transfer of payment data across the 
Internet. Some of these field values are provided by your bank card 
acquirer. 

Gateway Host Name is the hostname of the bank card gateway, which is 
provided by the acquirer. The card processor forwards all credit card trans-
action requests to this computer. The hostname differs depending upon 
whether you are running in test mode or production mode.

Gateway Port Number is the port number of the bank card gateway, 
which is provided by the acquirer. The bank card gateway listens on this 
port number for requests from the card processor. The host port number 
differs depending upon whether you are running in test mode or 
production mode.

Source ID is the merchant source ID provided by the acquirer. 

Key File is the location of your previously generated key pair file. The key 
pair file contains the public and private keys the card processor uses during 
secure communications with the gateway. 

Certificate File is the location of your certificate file. The certificate file 
contains the signed certificate that binds to the public key the card 
processor uses during secure communications with the gateway. 



Chapter 2, Setting up Netscape LivePayment   35

Configuring security

Log File is the path to the file that collects log data for the card processor. 
The path specified in the default is relative to the directory where the card 
processor was installed. You can accept the default value.

Control File is the path to a file that contains control information about 
your card processor. The file is created when you start the card processor. 
You can accept the default value.

FIFO Fil

 

e is the name of the communication pipe between the application 
and the card processor. You can accept the default value.

3. Save the changes.

Click the OK button to change the parameter values.

Domain Name Service (DNS) aliasing

The card processor delivered with LivePayment can work with acquirers 
who have configured their gateways to use Domain Name Service (DNS) 
aliasing. This allows for a given logical hostname to map to multiple IP 
addresses. DNS lookup spreads the load of multiple card processors 
connecting through the same gateway.

For example, the logical hostname of the FDC bank card gateway is 
ccgw.card.net. This logical hostname is mapped (by the DNS) to two 
different IP addresses: 165.90.142.2 and 204.254.78.2.

At startup, the card processor queries the domain name server with the 
given gateway hostname to retrieve a list of all possible IP addresses. From 
the list of addresses, the card processor randomly picks one address at a 
time and attempts to connect to that gateway. It stops at the first successful 
connection. The card processor reports an error and exits if it cannot 
connect to any of the addresses.

Configuring security
You have two options for configuring security for LivePayment. You can either 
use the same key pair file and certificate that the server uses, or you can have a 
separate key pair and certificate for LivePayment. Having two separate certifi-
cates gives you a higher level of security.



Configuring security

36   Netscape LivePayment Developer’s Handbook

Using the server’s certificate

To use the server’s key pair file and certificate, you have to copy the key file 
from the server directory to the LivePayment configuration directory. You must 
also have kept the original certificate email from the CA.

Copying the key file 

To copy the key file to the LivePayment configuration directory, follow these 
steps:

1. Display the Generate a Key File form.

On the Netscape LivePayment page, click the Generate a Key File link. A 
help page and the following form appear:

2. Copy the key file from the server directory to the LivePayment 
configuration directory.

Ignore the instructions in the help page. Instead, copy your key file from 
the server directory to the LivePayment configuration directory. For 
example, copy the key file:

server_dir/https-ID/config/ServerKey.db

to the LivePayment configuration directory, for example:

server_dir/livepayment-ID/config/CCPD-Key.db

where server_dir represents the directory where the server is installed, and 
ID is the server identifier of your HTTP server.

3. Update the file path.

If you do not specify a path name, the default is the LivePayment configu-
ration directory. If you want to store CCPD-Kye.db in a different directory, 
specify the path to that directory in the Key File Path field.



Chapter 2, Setting up Netscape LivePayment   37

Configuring security

4. Save your changes.

Click OK.

Copying the certificate

To use the server’s certificate, follow these steps:

1. Display the Install a Card Processor Certificate form.

From the Netscape LivePayment page, click the Install a Certificate link.

The email you received from the CA contains the certificate. You either 
need to specify the file name where the entire message was saved or cut 
and paste the message text into the box provided. 

2. Specify a destination directory for the certificate.

Specify the path to the certificate file. This file should not appear in your 
document root directory or any generally available directory. If you do not 
provide a path, the default is the LivePayment configuration directory.

3. Save your changes.

Click OK. The server extracts the certificate from the email and saves it to 
the directory you specified.



Configuring security

38   Netscape LivePayment Developer’s Handbook

Using a separate certificate for 
LivePayment

If LivePayment has its own key pair and certificate, use the following 
procedure:

1. Generate a key pair.

2. Request a certificate from a Certificate Authority.

3. Install the certificate when it is transmitted back to you from the Certificate 
Authority.

Generating a key pair file

You need to generate a key pair file that holds the 

 

public and private keys for 
LivePayment’s card processor. These keys are used during secure communica-
tions between the card processor and the bank card gateway. The private key is 
stored in encrypted form using a password you specify.

• A public key is usually used to exchange session keys. It is also used to 
verify the authenticity of digital signatures and to encrypt data.

• A private key is usually used to decrypt session keys. You always keep your 
private key secure. The server key file password protects the key, but for 
additional security you shouldn’t keep the key file in a directory where 
people have access to it. The private key is also used to create a digital 
signature when you first request a certificate.

To configure security, follow these steps: 

1. Display the Generate a Key Pair File page.

On the Netscape LivePayment page, click the Generate a Key File link. 
The Generate a Key Pair File form appears.



Chapter 2, Setting up Netscape LivePayment   39

Configuring security

The help window containing instructions for generating a key pair file 
automatically opens.

2. Open a new window beside the browser window.

3. Log on as the server user.

4. Change your directory to the server root.

5. Run the key file generation program. 

The program is in the bin directory of your LivePayment directory. Type:

bin/livepayment/admin/bin/sec-key

6. Type a location for the new key pair file.

Usually, the key pair file is stored in the server root, under the directory 
livepayment-ID/config, with the file name CCPD-Key.db. ID is the name of 
the server identifier. The directory you use should be safe from other users. 
For example, use a directory that only the server has read and write access 
to.

7. Generate the key pair.

A screen with a progress meter appears. Depending upon your operating 
system, you either move the mouse randomly or type random keys at 
different speeds until the progress meter is full. 

The randomness is used to create a unique key pair file. 

8. Type in a password for your key pair. 

Any time the card processor is restarted, you must type the password to 
decrypt the key file and extract the public and private keys. 

The password must be at least eight characters in length. It is required that 
the password have at least one non-alphabetical character (a number or 
punctuation mark) somewhere in the middle. Make sure you memorize this 
password. The security of your card processor is only as good as the 
security of the key file and its password.

9. Confirm the password.

Retype the password and click OK. 



Configuring security

40   Netscape LivePayment Developer’s Handbook

10. Return to the Generate a Key Pair File page.

Click the browser window displaying the Generate a Key Pair File page.

11. Enter the path to the key file.

In the Key File Path field, type the path and file name of the key file. This 
directory should be safe from other users. For example, use a directory that 
only the server has read and write access to. If no directory is specified, the 
LivePayment configuration directory is the default.

12. Save your changes.

Click OK. The system generates the key-pair file and places it in the 
directory you specified.

Changing the key pair file password

Periodically you may want to change your key pair file password for security 
reasons. If your server is not already running in secure mode, you must submit 
this form from the actual server machine or over a trusted network. Otherwise, 
your password could be intercepted over the network. 

To change the password, follow these steps:

1. Display the Change the Key Pair File Password form.

From the Netscape LivePayment page, click the Change Key Password 
link.



Chapter 2, Setting up Netscape LivePayment   41

Configuring security

2. Enter the path to the key file.

3. Enter the old password.

4. Enter the new password.

This password must be at least eight characters long and contain at least 
one non-alphabetical character (a number or a punctuation mark) 
somewhere in the middle. 

5. Confirm the new password by entering it again.

6. Save the changes.

Click the OK button to change the password.

Requesting a certificate

The certificate proves your identity before beginning a secure transaction. 
Certificate Authorities (CAs) are trusted third-party companies that can approve 
requests for signed digital certificates. Note that not everyone who requests a 
certificate is given one. Also, it can take anywhere from a day to two months or 
more to approve a certificate. You are responsible for promptly providing all 
the necessary information to the CA.

Before you can request a certificate, you must choose a CA and contact them 
regarding the specific format of the information they require. When you 
purchased LivePayment, you received a list of CAs. Most CAs require that you 
prove your identity before they issue a certificate. For example, they want to 
verify your company name and who is authorized by the company to admin-
ister LivePayment and whether you have the legal right to use the information 
you provide.



Configuring security

42   Netscape LivePayment Developer’s Handbook

To request a security certificate, follow these steps:

1. Display the Request a Card Processor Certificate form.

To access the form, click the Request a Certificate link on the Netscape 
LivePayment page. The Request a Card Processor Certificate form is 
displayed.

2. Fill in the information to send to the CA.

The form requires the following information:

Certificate Authority is the email address of the CA you have chosen.

New Certificate or Certificate Renewal indicates whether you are 
applying for a new certificate or a renewal. Many certificates expire after a 
set period of time, such as six months or a year. Some CAs will automati-
cally send you a renewal.

Key File Location is the location of your previously generated key pair 
file. The server uses this information to encrypt a message to the CA, and 
send the public key. 



Chapter 2, Setting up Netscape LivePayment   43

Configuring security

Key File Password is the password of your previously generated key pair 
file. The server uses this information to encrypt a message to the CA, and 
send the public key. 

Common Name is usually the fully qualified hostname used in DNS 
lookups (for example, www.netscape.com). However, some CAs might 
require different information, so it’s very important to contact them.

Email Address is your business email address. This is used for correspon-
dence between you and the CA.

Organization is the official, legal name of your company, educational insti-
tution, partnership, and so on. Most CAs require that you verify this infor-
mation with legal documents (such as a copy of a business license).

Organizational Unit is an optional field that describes an organization 
within your company. This can also be used to note a less formal company 
name (without the Inc., Corp., and so on).

Locality is an optional field that usually describes the city, principality, or 
country for the organization. 

State or Province is usually required, but can be optional for some CAs. It 
cannot be an abbreviation.

Country is a required, two-character abbreviation of your country name (in 
ISO format). The country code for the United States is US.

Telephone Number is your phone number. Be sure to include your area 
code and any international codes as applicable. The CA uses this number to 
contact you regarding your request for a certificate.

3. Send the request to the CA.

When you have filled out the required information, click OK. The server 
composes an email to the CA that includes your information. The email has 
a digital signature created with your private key. The digital signature is 
used by the CA to verify that the email wasn’t tampered with during routing 
from your server machine to the CA. In the rare event that the email is 
tampered with, the CA will usually contact you by phone.

You can’t continue configuring security until your request for a certificate is 
approved and a confirmation is sent to you by email. 

In the certificate file, all the fields together are called the distinguished name. 
The distinguished name in a certificate is not seen by users but it aids in 
uniquely identifying certificates to programs that need to identify them.



Configuring security

44   Netscape LivePayment Developer’s Handbook

Some CAs offer certificates that indicate a greater level of detail and veracity to 
vendors or individuals who provide greater proof of their identity. For example, 
you might be able to purchase a certificate that states that the CA has not only 
verified that you are the rightful administrator of the www.danishfurniture.com 
web site, but that you really are a furniture dealer, have been in business for 
ten years, and have no outstanding customer litigation against you. Generally, 
these certificates cost more than standard ones.

Installing a certificate

When you receive your certificate via email from the CA, it will be encrypted 
with your public key so that only you can decrypt it. The server will decrypt it 
when you install it. You can either save the email somewhere accessible to the 
server or copy the text of the email and be ready to paste the text into the 
Install a Card Processor Certificate form.

To install the certificate, follow these steps:

1. Display the Install a Card Processor Certificate form.

From the Netscape LivePayment page, click the Install a Certificate link.

The email you received from the CA contains the certificate. You either 
need to specify the file name where the entire message was saved or cut 
and paste the message text into the box provided. 



Chapter 2, Setting up Netscape LivePayment   45

Administering Netscape LivePayment

2. Specify a destination directory for the certificate.

Specify the path to the certificate file. This file should not appear in your 
document root directory or any generally available directory. The default 
directory is the LivePayment configuration directory.

3. Save your changes.

Click OK. The server extracts the certificate from the email and saves it to 
the directory you specified.

Examining a certificate

After your certificate is installed, you may need to examine it. For example, you 
might need to find out when it expires, or to provide certificate information to 
an acquirer. 

To examine a certificate, on the Netscape LivePayment page click the Examine 
a Certificate link. The certificate information is displayed.

Administering Netscape LivePayment
Once you have installed LivePayment, obtained your certificate, and set up 
your relationship with your acquirer, you perform the following administrative 
tasks:

• Start the card processor

• Check the card processor’s network connection

• Stop the card processor

You can also administer the LiveWire development environment from within 
LivePayment. For more information, see “Administering LiveWire” on page 47.



Administering Netscape LivePayment

46   Netscape LivePayment Developer’s Handbook

Starting the card processor

To start the card processor, follow these steps:

1. Display the Administer Card Processor page.

On the Netscape LivePayment page, click the Administer Card Processor 
link. The Administer Card Processor page is displayed.

The page indicates whether the card processor is running. To start the card 
processor, follow the directions on your screen. You will have to type 
random keystrokes and enter the password to your key pair file.

When you have entered the password successfully, you exit the program. 
The card processor is running.

Checking the gateway connection

To test the network connection between the card processor and the acquirer 
through the bank card gateway, follow these steps:

1. Display the Administer Card Processor page.

On the Netscape LivePayment page, click the Administer Card Processor 
link. The Administer Card Processor page is displayed.

A section of the page has a button for testing the card processor gateway 
connection.



Chapter 2, Setting up Netscape LivePayment   47

Administering LiveWire

2. Test the Gateway connection.

Click the Test Connection button to find out if the gateway connection is 
working. The system tests the card processor by sending a sample trans-
action through the gateway. A confirmation page displays the results of the 
test.

Stopping the card processor

To stop the card processor, follow these steps.

1. Display the Administer Card Processor page.

On the Netscape LivePayment page, click the Administer Card Processor 
link. The Administer Card Processor page is displayed.

The page shows whether the card processor is running or not. 

2. Stop the card processor.

Click the Stop Card Processor button to stop the card processor. The page 
indicates whether the shut down was successful.

Administering LiveWire
The Netscape LivePayment page contains a link to the LiveWire Application 
Manager, where you can install, modify, restart, run and delete LiveWire appli-
cations on your server. Use the LiveWire Application Manager to administer the 
LIvePayment Starter Application Set and any LivePayment applications you 
create. 



Administering LiveWire

48   Netscape LivePayment Developer’s Handbook

To use the LiveWire Application Manager, follow these steps:

1. Display the LiveWire Application Manager page.

On the Netscape LivePayment page, click the LiveWire Application 
Manager link to access the LiveWire Application Manager. This page 
displays all currently installed LiveWire applications and allows you to 
install new ones.

2. Display information about an application.

Highlight an application to see its information displayed in the frame on the 
right. 

Note that for LivePayment the external library is:

/server_dir/bin/https/libccp.so

3. Run an application

With the application you want to run highlighted, click Run. 

For more information on this page, click the Help link, or see the LiveWire 
documentation. 



Chapter 2, Setting up Netscape LivePayment   49

Accessing the Server Selector

Accessing the Server Selector
You can access the Server Selector page by clicking the Server Selector link on 
the LivePayment page. The Server Selector page contains links to use when 
administering your server. It also contains a link to the LivePayment page. 



Accessing the Server Selector

50   Netscape LivePayment Developer’s Handbook



Chapter 3, Payment application concepts   51

C h a p t e r

3

 

Payment application concepts

 

his chapter includes information about developing with LivePayment, 
and describes the transaction flow for processing credit cards. Use the 

information in this chapter along with Chapter 8, “Using the LivePayment 
objects” and Chapter 10, “Using the cpcmd utility” to develop credit card appli-
cations. 

This chapter has the following sections:

• Credit card transactions

• Business rules for credit card applications

• Designing your database

• Using batches

• Maintaining the payment and batch states

• Storing Information from the acquirer

T



Credit card transactions

52   Netscape LivePayment Developer’s Handbook

Credit card transactions
Before writing your credit card application, you must understand the basic 
transactions for processing credit card information, and the communication 
between the card processor and the Bank Card Gateway.

The following sections describe the credit card transactions in detail. They refer 
to the three parties involved in credit card commerce on the Internet: the 
customer with the credit card, the merchant who has set up a store to conduct 
business on the Internet, and the bank card acquirer. The explanation assumes 
that the person creating the credit card application is the merchant.

Creating a slip

The slip mimics the paper charge slip created when a customer purchases an 
item at the store using a credit card. This information includes:

• Credit card number

• Amount allowed for purchases

• Expiration date

• Card type (for example, MasterCard, Visa etc.)

The slip also contains additional information:

• The cardholder’s billing address (street address and zip code)

• The maximum amount that the merchant can charge against a slip.

The customer shops at a merchant’s web site with a browser. If the customer 
decides to make a credit card purchase, the customer enters credit card and 
other information, which the merchant uses to create the slip.

The slip is encrypted for security reasons. Once encrypted, some of the credit 
card information is not accessible, for example, the card number and expiration 
date. 

The information on the slip is used for authorizing and capturing a purchase. 



Chapter 3, Payment application concepts   53

Credit card transactions

Authorizing a purchase

After the customer requests a purchase and the merchant creates a slip, the 
merchant requests authorization of the purchase from the bank card acquirer. 
An authorization ensures that the customer has a valid credit card with enough 
credit for the purchase. When a purchase is authorized, the amount of money 
authorized is reserved against the card’s credit limit. The amount of money is 
reserved for a period of time which is determined by the bank that issued the 
card.

The authorization information includes:

• Amount

• Currency

• Slip information

When the merchant authorizes a purchase, LivePayment sends authorization 
information to the card processor, which sends it through the Bank Card 
Gateway to the bank card acquirer. 

The acquirer either rejects or approves the authorization. If the authorization is 
approved, the transaction can continue.

As part of the approval, the acquirer sends the merchant the authorization 
code, and may also send the payment service data and the address verification 
service result. The merchant saves this authorization information to use when 
capturing. See “Storing Information from the acquirer” on page 64 for more 
information on this acquirer-supplied information. In addition, the merchant 
should keep track of the state of the credit card transaction. See “Maintaining 
the payment and batch states” on page 65 for more information about the state. 

Starting a new batch

A batch is a group of transactions that can be settled later as a group. Starting a 
new batch is sometimes called opening a batch. Some merchants start a new 
batch at the beginning of the business day and settle it at the end of the 
business day. Other merchants cycle through batches more or less often. 



Credit card transactions

54   Netscape LivePayment Developer’s Handbook

When the card processor starts up initially, or when a current batch is settled, 
transactions automatically start in a new batch. You need to know the batch 
number to capture a or credit an amount. The acquirer supplies the batch 
number. If you are using JavaScript, use getCurrentBatch to find out the latest 
batch number. You should store the batch number in the database.

See “Using batches” on page 58 for more information about batches.

Capturing a purchase

A lag time may occur between authorization (when the product is ordered), 
and capture (when the product is shipped). Information required for capture 
includes:

• Amount

• Slip information

• Batch number

• Event ID

• Values supplied by the acquirer at authorization 

When the merchant is ready to ship the product he or she captures the 
purchase. The LiveWire or CGI program sends the capture information to the 
card processor, which sends it through the Bank Card Gateway to the bank 
card acquirer. The acquirer either rejects or approves the capture. 

The merchant must maintain the state when the capture is sent to the acquirer 
and update it when the acquirer approves the capture. See “Maintaining the 
payment and batch states” on page 65 for more information on the state. 

Issuing credit for a purchase

To credit the account of a customer for a purchase, the merchant must use 
information on the original record of the purchase and issue credit for the 
amount that was previously captured. The merchant does not need to perform 
an authorization for a credit.



Chapter 3, Payment application concepts   55

Business rules for credit card applications

The merchant maintains the state when the credit is sent to the acquirer and 
updates it when the acquirer approves the credit. See “Maintaining the payment 
and batch states” on page 65 for more information on the state. 

Settling a batch

The batch continues to accumulate capture and credit data until it is settled. 
When settling a batch, the merchant checks the total number of sales and the 
total sales amount against the numbers recorded in the batch. The merchant 
also checks the total number of credits (refunds) and total credit amount. The 
merchant must track these values in the application. If there is a discrepancy, 
the merchant must contact the acquirer and resolve it. 

The batch number is required to settle the batch. See “Using batches” on page 
58 for more information about batches.

Business rules for credit card applications
When writing a credit card application, you must follow a few basic business 
rules about credit card processing.

Authorize

The following rules govern the use of authorize.

• You must authorize for at least the amount you are going to capture. If you 
authorize for less than the capture amount, you must perform another 
authorization. Some applications do an initial authorization of a small 
amount (for example, $1.00) to check that the card is valid, then when the 
product is ready to ship, authorize for the full amount.

• If you authorize for more than the amount you capture, you should notify 
your acquirer. You can still use the same authorization code.

• When a payment is authorized, the acquirer returns the AVS (address verifi-
cation service) result. This field verifies the billing address given by the 
customer against the cardholder’s billing address. The AVS is a security 



Business rules for credit card applications

56   Netscape LivePayment Developer’s Handbook

check to help ensure that the person using the card is actually the 
cardholder. At least one part of the response (the street address or the zip 
code) should match, otherwise you should refuse the transaction. If the 
acquirer does not check the AVS, or if the AVS does not match, you may still 
accept the transaction, but it presents a higher level of risk. For more infor-
mation, see “Results of authorize” on page 64.

• Once a payment is authorized, the authorization remains active for an 
amount of time that is determined by the bank that issued the card. You 
must capture the amount during this period, or you have to authorize the 
payment again.

Capture 

The following rules govern your use of capture:

• Though you can authorize when an order is made, you should not capture 
until the goods are shipped. 

• You must take steps to ensure that a customer is charged only once for each 
purchase. For more information, see “Maintaining the payment and batch 
states” on page 65.

• You must have the current batch number.

• If your acquirer is FDC, your eventID or transactionID must be unique 
within the batch. If you do not use a unique ID, you may not be able to 
settle the batch later.

Credit 

The following rules govern you use of credit:

• You are not required to run authorize before crediting an account. 
However, the card to which you are crediting money must be valid. 

• You must have the current batch number.



Chapter 3, Payment application concepts   57

Designing your database

• If your acquirer is FDC, your eventID or transactionID must be unique 
within the batch. If you do not use a unique ID, your transaction is ignored. 
A credit needs a unique ID—do NOT use the capture’s ID.

• If your acquirer is FDC, you will not receive an immediate error under the 
following conditions when crediting. However, you should institute checks 
for the following conditions, since they could cause problems later.

• FDC does not verify that the credit card numbers are correct for a credit 
card type when crediting. For example, if the credit card type is Visa, 
but the credit card number is a valid American Express number, the 
credit operation will still be successful. If you want to make this check, 
you should build a check of the card type against the type of the card 
number into your application. 

• FDC does not check the expiration date of the card when crediting. If 
the account number is valid, the credit is successful, even if the card has 
expired. You should include a check of the expiration date in your 
application before crediting.

Settle 

The following rules govern your use of settle:

• Once you settle, all new transactions go into the next batch. 

• While you are settling a batch, you cannot capture.

• You totals for captures and credits must match those of your bank card 
acquirer when you settle. If they do not match, you must contact your bank 
card acquirer.

Designing your database
Before you create a credit card database application, you should design, create, 
and populate (at least in prototype form) your database. If you are using 
LiveWire, you should read the information on developing a LiveWire appli-
cation with a database in the LiveWire Developer’s Guide.



Using batches

58   Netscape LivePayment Developer’s Handbook

You should store slip and payment information in your database. For infor-
mation on what to store, see the documentation on the LivePayment objects, 
which includes a detailed explanation of what parameters the objects and their 
methods require. You also need to store information received from the acquirer 
as a result of transactions. For more information, see “Storing Information from 
the acquirer” on page 64.

Finally, you need to maintain and store the payment and batch states. For more 
information see “Maintaining the payment and batch states” on page 65.

Using batches
A batch includes the captures and credits as they happen, so that they can be 
settled later as a group. Some merchants, for example, start using a new batch 
at the beginning of the business day and settle it at the end of the business day.

Using batches in an application

This section summarizes the steps that must be included in an application for 
maintaining batches. You need the batch number when you capture a payment, 
credit an account, and settle a batch.

Note that when using JavaScript, we recommend getting the current batch 
number initially using the getCurrentBatch method, and storing the batch 
number in the database. After that, use the batch number stored in the database 
to create a new batch object using the new operator. In addition, when using 
JavaScript this procedure assumes that you will need to recreate the batch 
object before using it to capture or settle. The procedure also assumes that 
capturing and settling take place in different JavaScript sessions.

Getting and storing the batch number

You must find out and store the batch number before capturing or settling 
payments.

1. Find out the current batch number (for JavaScript use getCurrentBatch).

2. Write the current batch number to the database.



Chapter 3, Payment application concepts   59

Using batches

Using the batch number for capture

To capture, you need the batch, and if you’re using JavaScript, you need to 
recreate the batch object.

1. Before capturing, retrieve the batch number from the database.

2. If using JavaScript, create a new batch object (using the new operator) so 
that you can pass it to the capture method.

3. Capture the payment.

4. Write to the database.

Using the batch number for credit

To credit a account, you need the batch, and if you’re using JavaScript, you 
need to recreate the batch object.

1. Before crediting, retrieve the batch number from the database.

2. If using JavaScript, create a new batch object (using the new operator) so 
that you can pass it to the credit method.

3. Issue credit for the payment.

4. Write to the database.

Using the batch number for settle

You also need the batch to settle, and if you’re using JavaScript, you need to 
recreate the batch object.

1. Before settling, retrieve the batch number from the database.

2. If using JavaScript, create a batch object (using the new operator) so that 
you can pass it to the settleBatch method.

3. Get the total sales amounts, total sales counts, total credit amounts and total 
credit counts from the database. 



Using batches

60   Netscape LivePayment Developer’s Handbook

4. Settle the batch (if using JavaScript, use settleBatch).

5. Write to the database.

Order of transactions 

The order of transactions depends upon your business model—when the 
customer places an order, when you ship your product, and how many batches 
you use during a day. 

Authorizations are not included in batches. Technically, you do not need to 
know the batch number until you start capturing. In addition, you might 
perform a number of authorizations before performing any captures. 



Chapter 3, Payment application concepts   61

Using batches

For example, if a company ships “hard” goods and does not keep an accurate 
online inventory system, the flow might be as follows. Each box represents a 
different session.This chart only shows two authorizations and captures, but 
there could be more or fewer in actuality.

First, authorize the amounts. When you are ready to capture, you get the 
current batch and create the batch object. Then you can capture the amounts. 

Authorize

Authorize

Get Current Batch Num-
ber and Store in Data-

base

Get Batch Number from 
Database and Create 

Batch Object (JavaScript)

Capture or Credit

Get Batch Number from 
Database and Create 

Batch Object (JavaScript)

Capture or Credit

Get Batch Number from 
Database and Create 

Batch Object (JavaScript)

Get Total Sales and Total 
Credits

Settle



Using batches

62   Netscape LivePayment Developer’s Handbook

When you are ready to settle, you again get the batch number and create the 
batch object. 

Authorizing purchases first and delaying captures until right before settling is a 
good model for “hard” goods. Because there may be a lag time between the 
authorization of a purchase and the capture, all captures are done immediately 
before settling. This model does not work as well for companies that have a 
high transaction volume, because many captures need to be done at once.



Chapter 3, Payment application concepts   63

Using batches

The following flow of transactions might be good for companies that sell “soft” 
goods, for example, an online publishing system that delivers information as 
soon as the customer enters a credit card number. This chart only shows two 
authorizations and captures, but there could be more or fewer in actuality.

First, you get the current batch. Then you authorize. Then you create a batch 
object. Then you capture. The process repeats until you are ready to settle. 
There is no delay between the authorize and capture, since there is no time lag 
between ordering a product and shipping it.

Get Current Batch Num-
ber and Store in Data-

base

Authorize

Get Batch Number from 
Database and Create 

Batch Object (JavaScript)

Capture or Credit

Authorize

Get Batch Number from 
Database and Create 

Batch Object (JavaScript)

Capture or Credit

Get Batch Number from 
Database and Create 

Batch Object (JavaScript)

Get Total Sales and Total 
Credits

Settle



Storing Information from the acquirer

64   Netscape LivePayment Developer’s Handbook

Storing Information from the acquirer
This section contains information on saving information provided by the 
acquirer as the result of credit card transactions.

You need to save the following information when it is sent to the application 
from the acquirer. All of this data is needed by later transactions. You can store 
the data in the database of your choice, for example, the database included in 
LiveWire Pro. 

Results of authorize

When an authorization is successful, you receive the following information 
from your acquirer:

• Authorization code

• Payment Service Data

• Address Verification Service (AVS) Result

You need to save all of these fields in a database, for use later in capturing.

The authorization code is the acquirer’s identification of the authorization. The 
Payment Service Data (also called the Interchange Compliant Code) is also 
provided by the acquirer when the authorization is approved.

The Address Verification Service is a three-character response that informs the 
merchant whether the address (billing street, billing zip code) given by the 
person ordering the goods matches the cardholder’s address. The AVS is a 
security check to help ensure that the person using the card is actually the 
cardholder. At least one part of the response (the street address or the zip 
code) should match, otherwise you should refuse the transaction. Note that the 
acquirer will still authorize a payment even if the AVS does not match. It is up 
to the merchant to decide whether or not to continue with the transaction.

The AVS response is three characters. The first character represents whether the 
address matches, the second character represents whether the zip code 
matches, and the third character is the authorizer verification result code. “Y” is 



Chapter 3, Payment application concepts   65

Maintaining the payment and batch states

a match, “N” is no match, and “X” is unavailable or incomplete service. If you 
receive a response of “X” you should continue with the transaction. You cannot 
interpret the Authorizer Verification Result code (the third character).

Note:  The AVS response is a random response when you run in loopback 
mode. The random response allows you test for all possible responses.

Batch number

The current batch number is provided by the acquirer when you query the 
system for the batch number (getCurrentBatch in JavaScript). You need the 
batch number to capture payments, as well as to settle. You must store the 
batch number when you get it from the acquirer. For more information, see 
“Using batches” on page 58.

Maintaining the payment and batch states
Each credit card transaction must have a state to track where the payment is in 
the transaction flow, and whether a batch is a current batch, or a settled batch. 
Because LivePayment does not maintain a state in a database of its own, you 
should maintain the state in the application you write. You can store the state 
in the database of your choice, for example, the database included in LiveWire 
Pro.

Address Match Zip Code Match Authorizer Verification 
Result Code

Y = Yes it matches. Y = Yes it matches. Opaque. You cannot 
interpret it.

N = No it does not 
match.

N = No it does not 
match.

Opaque. You cannot 
interpret it.

X = Match not checked 
or service incomplete.

X = Match not checked 
or service incomplete.

Opaque. You cannot 
interpret it.



Maintaining the payment and batch states

66   Netscape LivePayment Developer’s Handbook

Why is the state needed?

You need to maintain the state for the following reasons:

• To keep track of where your payments are. For example, when you 
maintain the state you know whether a payment has been sent to the 
acquirer for capture or not. 

• To ensure that the transfer of funds is done correctly. For example, when 
you maintain the state you know that a payment amount has already been 
captured, and you can avoid capturing it more than once. If the system 
should go down, the state provides a way to check up on every ongoing 
transaction.

• To keep track of whether a batch is the current batch or a settled, historical 
batch. 

Keeping track of the payment states

The state field is a safety measure; by using it you know at any given time the 
payment’s state. Netscape strongly recommends that you maintain states in your 
application. The following information provides guidelines for you in setting up 
your states.

The payment state typically changes at each point that information is sent to or 
received from the acquirer. For example, before you send a capture transaction 
through the card processor to the acquirer, the state changes to capturing. 
When the acquirer replies with transaction approval, the state changes to 
captured. 

The following table shows the state for each payment transaction:

Payment Transaction State

The payment has not been authorized yet. none (not stored 
in the database)

The payment is about to be sent to the acquirer for authoriza-
tion.

authorizing

The payment has been authorized by the acquirer. authorized



Chapter 3, Payment application concepts   67

Maintaining the payment and batch states

The state is most important for capturing and crediting, since those transactions 
are the ones in which money is transferred. However, it is a good idea to 
maintain the state for all transactions.

For example, the merchant sends a payment to the acquirer and changes the 
state to capturing. If the system goes down, the merchant will need to know 
the capturing state so that the merchant can contact the bank card acquirer and 
find out if the capture has happened on the acquirer’s side. If the merchant 
does not track the state accurately, the customer may inadvertently be charged 
twice for the same order.

Keeping track of the batch states

The merchant must also maintain a state for your batches. The following infor-
mation provides guidelines for you in setting up your states.

When you maintain the batch state you know whether a batch is currently 
receiving transactions (open). You also know when a batch is being settled. No 
captures should be performed while a batch is being settled. Once a batch has 
been settled, no more transactions are included in it. It is used for history data. 

The payment was authorized, but the purchase is rejected by 
the merchant (for example, if the AVS response indicates that 
the address does not match).

cancelled

The payment is about to be sent to the acquirer for capture. capturing

The payment has been captured by the acquirer. captured

The credit is about to be sent to the acquirer crediting

The credit has been approved by the acquirer credited

Batch Transaction State

The batch has not been started. none (not in the database)

The batch has been started (get current batch). opened

The batch is being settled. settling

The batch is settled. settled

Payment Transaction State



Maintaining the payment and batch states

68   Netscape LivePayment Developer’s Handbook

Idempotent transactions

Depending on your acquirer, some credit card transactions are idempotent. 
Idempotent transactions can be sent to the acquirer more than once, without 
resulting in a double transaction against the credit card. If your acquirer is First 
Data Corporation (FDC) the getCurrentBatch, capture, and credit transac-
tions are idempotent. 

For example, a merchant sends a payment to the acquirer. 

The acquirer receives it, performs a capture, and sends a capture response back 
to the merchant. However, the capture response never makes it to the 
merchant, for example, if the merchant’s system goes down while the response 
is in transit. 

 

Merchant Acquirer

Capture Purchase

 

Merchant

Receives 
request and 
performs 
capture

Capture Purchase

Capture Response

 

Acquirer



Chapter 3, Payment application concepts   69

Maintaining the payment and batch states

When the merchant reboots the system, the merchant cannot tell whether the 
capture has been processed by the acquirer or not, because the response never 
arrived. Because capture is idempotent, the merchant can send the same 
capture again to the acquirer, and the acquirer will only charge the cardholder 
for one capture. 

The following table shows which transactions are idempotent for FDC:

Netscape strongly recommends that you maintain the state, even if you also 
take advantage of the idempotent transactions in your implementation.

Idempotent Not Idempotent 

getCurrentBatch authorize

capture

settleBatch

credit

Capture Purchase
R

 

esends 
original 
capture

Captures 
the 
payment 
only once

 

Merchant

Receives 
request and 
performs 
capture

Capture Purchase

Capture Response

 

Acquirer



Maintaining the payment and batch states

70   Netscape LivePayment Developer’s Handbook



 

Part 2, Using the LivePayment Starter Application Set   

 

71

 
2

 

Using the LivePayment Starter 

Application Set

 

• Running the Starter 
Application Set

• Reviewing the application code

• Modifying the Starter 
Application Set

• Netscape LivePayment Starter 
Application Set Reference



72   Netscape LivePayment Developer’s Handbook



Chapter 4, Running the Starter Application Set   73

C h a p t e r

4

 

Running the Starter Application Set

 

he Starter Application Set is a set of applications that you can use to 
process credit card payments. You can use the Starter Application Set as 

a basis for payment-enabling your existing web site or developing a new site.

If you wish to review the application code, see Chapter 5, “Reviewing the 
application code.”

This chapter presents two simple scenarios, the first from the point of view of a 
customer running the application, and the second from the point of view of a 
merchant administering the application.

This chapter presents the following topics:

• Before you begin

• Starting the application

• Making a purchase

• Using the administration interface

T



The application files

74   Netscape LivePayment Developer’s Handbook

The application files
The Starter Application Set is comprised of two LiveWire applications, LPStart 
and LPAdmin. LPStart is a simple payment processing application seen by 
customers when they purchase a product from you. LPAdmin is an application 
you use to administer the transaction data generated by customer purchases. In 
building your application, you can use LPAdmin “as is”, but you’ll need to 
modify LPStart.

The application files are comprised of HTML files containing HTML code and .js 
libraries containing the JavaScript functions, the application code. The HTML 
files call the functions in the .js libraries.

As Figure 4.1 shows, the .js files are divided into two main directories, 
readonly_lib and merchant_lib. The readonly_lib directory contains the credit 
card processing libraries. The merchant_lib directory contains modifiable 
libraries. In general, you should not modify the code in the readonly_lib 
directory, and you should modify the code in the merchant_lib directory only 
after making backups and understanding the code.

The application code has been written generically and for reuse. In the majority 
of cases you will not need to modify the merchant_lib library code.

There are a number of HTML files required as form handlers. Currently, the 
HTML form pages cannot make direct calls to functions in the .js files. They 
must go through HTML form handlers.



Chapter 4, Running the Starter Application Set   75

Before you begin

Figure 4.1  Starter Application Set directories

Before you begin
Before running the Starter Application Set, you should have satisfied the 
prerequisites and configured the application to run, as described in the 
following sections.

 

/images

/transact

LPAdmin

/ifx

/merchant_lib

/admin

Informix data files

LPAdmin transaction HTML files

Modifiable library files

Image files

Administration HTML files

LPAdmin home directory

/readonly_lib Non-modifiable libraries

LPStart

/transact LPStart transaction HTML files

LPStart home directory

/ora Oracle data files



Starting the application

76   Netscape LivePayment Developer’s Handbook

Prerequisites

To run the Starter Application Set, you need:

• An Enterprise Server running.

• A relational database installed and running.

• LiveWire installed and enabled. Test the “video store” application to ensure 
LiveWire is properly configured and communicating with a database.

• LivePayment installed and running.

Before running the Starter Application Set, read Chapter 2, “Setting up Netscape 
LivePayment” and Chapter 3, “Payment application concepts”.

Configuration

The Starter Application Set needs to be configured to work in your 
environment. You need to modify the line in the start.html file that calls the 
database.connect method, which connects the Starter Application Set to the 
database. Modify the following properties in the start.html file for both LPStart 
and LPAdmin.

project.dbType— your database type (for example, "INFORMIX")

project.dbServer—your database server name 

project.dbUsername— your database login name

project.dbPassword—your database password

project.dbName—the name of your database. Change this to something 
other than "LIVEPAYMENT." This should have the same value for LPAdmin 
and LPStart.

Starting the application
From the LiveWire application manager, run LPStart. The first page invites you 
to click on the Purchase link to purchase an item.



Chapter 4, Running the Starter Application Set   77

Making a purchase

Making a purchase
1. Click on the Purchase link to begin the purchasing process.

You are presented with a selection of three items: a coffee mug, a mouse 
pad, and a stuffed Mozilla. In this application, you may select only one item 
per purchase. Select any item by clicking on the radio button below it.

2. Select an item to purchase and click on the Purchase Selected Item 
button.

3. Enter your billing and shipping information in the order form.

This includes your full name and your credit card type, number, and 
expiration date. Enter the shipping information. Clicking the Clear Form 
button clears all the information you’ve entered and lets your start over. 

4. Click the Complete Purchase button.

The application performs some checks on the information you submitted, 
creates a payment slip, and attempts to authorize it.

If successful, the application displays a receipt, indicating your purchase 
was authorized. If it cannot authorize, the application displays an error 
message.

5. Click on the Return Home link.

This returns you to the home screen.

Using the administration interface
Once you have made a purchase, use the cash register administration pages 
provided by LPAdmin to view how the system has recorded the transaction.

1. From the LiveWire Administration page, run LPAdmin.

The administration screen offers links to other screens wherein you can 
view transaction information and perform collection transactions.



Viewing uncaptured authorizations

78   Netscape LivePayment Developer’s Handbook

Viewing uncaptured authorizations
2. From the main Administration screen, click on the Capture button.

This screen displays a table that reflects the information the system has 
recorded to identify your authorized, but uncaptured, purchase. Your 
purchase will appear as a row in this table. The system has recorded the 
merchant, credit card type, authorization code, payment service, AVS data, 
event ID, event time, slip ID, batch ID, and status.

3. Click on the transaction ID.

You are presented with a transaction summary screen with two buttons, 
Capture Transaction and Back. These are used to capture a single trans-
action or back up a screen.

Capturing a transaction

Capturing is usually performed in batches of transactions. However, to capture 
a single transaction, for example if the goods have just shipped, you capture 
the transaction from this screen.

1. Click on the Capture Transaction button.

This displays a message confirming the transaction has been captured.

Viewing transactions in the current 
batch

1. From the main Administration screen, click on the Current button.

This displays a list of transactions in the current batch. These are captured 
transactions which have not yet been settled.

Cancelling a transaction

A transaction can be cancelled if it has not yet been captured. After a capture, 
the transaction must be reversed by a credit.



Chapter 4, Running the Starter Application Set   79

Viewing uncaptured authorizations

1. From the administration screen, click on the Cancel button.

This displays a list of transactions in the current batch.

2. Click on the transaction ID.

You are presented with a transaction summary screen with two buttons, 
Cancel Transaction and Back. These are used to cancel a single trans-
action or back up a screen.

3. Click on the Cancel Transaction button.

Crediting a transaction by batch

Crediting a customer’s credit card may be necessary if the goods are returned or 
the transaction needs to be cancelled after a capture. To credit a transaction:

1. Click on the Credit button.

This displays a list of batches in the database.

2. Click on the ID of the batch which contains the transaction to be 
credited.

This displays the list of transactions in the batch.

3. Click on the ID of the transaction you wish to credit.

This displays a summary page with information about your transaction and 
a Credit Transaction button.

4. Click on the Credit Transactions button.

This credits your transaction and displays a confirmation message.

Manually crediting a transaction

1. Click on the Manual button.

This displays the Manual Credit page.



Viewing uncaptured authorizations

80   Netscape LivePayment Developer’s Handbook

2. Fill in the fields of the form.

The fields include credit card type, number and expiration, the cardholder’s 
name, the amount, and a brief description of the credit.

3. Click on the Perform Credit button.

Viewing previous transactions by batch

1. Click on the Previous button.

This page displays a list of transaction batches. Clicking on the batch ID 
displays the list of transactions in that batch.

Settling the current batch

1. Click on the Settle button.

The Settle Batch button settles the current batch, which includes all trans-
actions that are captured or capturing and credited or crediting. The current 
batch does not include authorized transactions.

The Autocapture button captures outstanding authorizations and settles the 
current batch of captured transactions.

Searching for a transaction

The LPAdmin application provides a query page you can use to search for a 
transaction. To search for a transaction:

1. Click on the Query button.

If you are searching for a single transaction and you know the transaction’s 
ID number, you may enter the ID and run the query. If you don’t know the 
transaction ID or are searching for multiple transactions, there are additional 
fields to fill in.



Chapter 4, Running the Starter Application Set   81

Viewing uncaptured authorizations

2. Enter the information in the fields provided.

3. Click on the Run Query button.

The query returns the transactions that matched all your parameters.



Viewing uncaptured authorizations

82   Netscape LivePayment Developer’s Handbook



Chapter 5, Reviewing the application code   83

C h a p t e r

5

 

Reviewing the application code

 

he Starter Application Set code provides you with code that performs all 
the basic credit card processing functions. As with LPStart, your appli-

cation should call the functions defined in the .js libraries to perform its basic 
credit card processing tasks. The next section describes these functions.

If you wish to modify the Starter Application Set, see Chapter 6, “Modifying the 
Starter Application Set”.

Although this chapter also delves into the specifics of the .js libraries, since the 
library code is generic to any LivePayment application, you do not need to 
modify any portion of the libraries for your specific needs. The material in this 
chapter is intended to help you understand how to use the LivePayment 
objects in your code.

This chapter presents the following topics:

• The credit card processing functions

• The LiveWire objects

• The LivePayment objects

• Authorizing a purchase

• Capturing a transaction

T



The credit card processing functions

84   Netscape LivePayment Developer’s Handbook

• Crediting a transaction

• Settling a batch

The credit card processing functions
The following table describes the library functions that perform credit card 
processing tasks for the starter application. You should call one of these 
functions when you need to perform a credit card processing function.

The credit card processing functions are described in depth in Chapter 7, 
“Netscape LivePayment Starter Application Set Reference”.

The LiveWire objects
This section reviews the LiveWire objects used in the .js libraries. You can find 
complete information about these objects and their usage in LiveWire applica-
tions in the LiveWire Developer’s Guide. If you are familiar with the LiveWire 
objects, skip to The LivePayment objects later in this chapter.

Function Description File

GetCurrentBatch Get the current batch of transactions common.js

Authorize Authorize a transaction authorize.js

Capture Capture an authorized transaction capture.js

Credit Credit a transaction credit.js

Cancel Cancel a transaction cancel.js

SettleBatch Settle the current batch of transac-
tions

settlebatch.js



Chapter 5, Reviewing the application code   85

The LiveWire objects

The database object

A LiveWire application uses the Database object to communicate with your 
database. Each application can have only one database object. You do not 
need to create the database object—it is created for you when you connect to 
the database. You connect to the database with the connect method.

database.connect 
("server","server_name","user_name","password","database_name")

The execute method

Once connected, the application executes SQL queries on the database with the 
execute method. For example, the following call sets the status of purchases 
with id=authid in table LP_PURCHASE to CANCELLED.

database.execute("update LP_PURCHASE set status = \’CANCELLED\’ where id 
= " + authid)

The cursor method

The result of a SQL SELECT statement is stored in a cursor object. To create a 
cursor object, the application invokes the database object’s cursor method. 
The syntax for a cursor method call is:

cursorName = database.cursor("sqlStatement",[updateable])

For example, the following call selects the rows from table LP_PURCHASE 
with id=transid and stores them in the my_cursor object.

my_cursor = database.cursor("select * from LP_PURCHASE where id=’" + 
transid + "‘");

The application advances through the rows in the my_cursor object with the 
cursor.next method. For example, the following code displays rows (transac-
tions) from a cursor in tabular form.

while (my_cursor.next())
{

</SERVER>

<TR>
<TD><SERVER>write("<a href=\"viewtrans.html?type=" + request.type 

+ "&batchid=" + my_cursor.id + "\">" + my_cursor.id + "</a>");</
SERVER></TD>

<TD><SERVER>write(my_cursor.batchNumber);</SERVER></TD>



The LivePayment objects

86   Netscape LivePayment Developer’s Handbook

<TD><SERVER>write(my_cursor.merchantReference);</SERVER></TD>
<TD><SERVER>write(my_cursor.totalSalesAmount);</SERVER></TD>
<TD><SERVER>write(my_cursor.totalCreditAmount);</SERVER></TD>
<TD><SERVER>write(my_cursor.salesCount);</SERVER></TD>
<TD><SERVER>write(my_cursor.creditCount);</SERVER></TD>
<TD><SERVER>write(my_cursor.status);</SERVER></TD>
</TR>
<SERVER>

}
my_cursor.close()

The project object

The project object maintains global data for an entire application, such as the 
currency and acquirer. The project object allows multiple clients accessing a 
single application to share data.

The request object

The request object is created in response to a form submission. Each property 
of the request object corresponds to a form input element of the same name. 
For example, the following HTML code corresponds to the request.guess 
property.

<FORM METHOD="post" ACTION="hangman.html">
<P>
What is your guess?
<INPUT TYPE="text" NAME="guess" SIZE=1>

The LivePayment objects
This section provides brief descriptions of the LivePayment objects. These 
objects are described in depth in Chapter 8, “Using the LivePayment objects”, 
and Chapter 9, “LivePayment object reference”. If you are familiar with the 
LivePayment objects, skip to “Authorizing a purchase” on page 88.



Chapter 5, Reviewing the application code   87

The LivePayment objects

The Merchant object

The Merchant object represents a merchant doing commerce on the Internet. 
It is used to store the information that identifies the merchant to the acquirer, 
such as the merchant number (provided by the acquirer) and the merchant 
name.

The Processor object

The Processor object is how LivePayment represents the bank card acquirer. 
The acquirer handles payment transactions from the merchant. The Processor 
object takes care of communicating with the acquirer through the gateway. The 
Processor has methods for authorizing, capturing, crediting, and settling trans-
actions. 

The Slip object

The Slip object is analogous to the paper slip used to confirm a charge to your 
credit card. It contains credit card information and order information. Unlike a 
paper slip, the Slip object encodes the credit card information for security. The 
encoded information is decoded by the acquirer to approve and collect the 
payment for the merchant.

The Batch object

The Batch object is a collection of transactions that have not yet been settled. 
The Batch object contains information about each of those transactions. Batch 
objects are identified by a batch ID.



Authorizing a purchase

88   Netscape LivePayment Developer’s Handbook

The Terminal object

The Terminal object is analogous to a supermarket checkout terminal. It is 
where the card processing takes place. Each terminal is assigned a number by 
the acquirer. Just as a supermarket can have multiple checkout lanes, each with 
a separate terminal, your application may have multiple terminals.

Authorizing a purchase
The system authorizes a purchase by generating the Slip object, encoding the 
slip, and authorizing the credit card charge. The code for authorizing a 
purchase resides in the authorize.js file.

Generating a slip

By generating a slip, the application encodes the information relevant to a 
transaction in a format that can be transmitted to the acquirer bank for authori-
zation.

The application generates a slip by creating a Slip object and populating its 
properties with the values garnered from the purchase form. The call that 
creates the Slip object is in the GenerateSlip function in file common.js: 

slip = new Slip(slipData.cardNumber, slipData.cardExpDate, amount, 
currency);

The call takes the credit card number, expiration date, amount, and currency 
and returns a new Slip object.

After the Slip object is created, additional values from the transaction are 
entered into the object’s properties, including an order description.

slip.billingStreet = slipData.Address;
slip.billingZip = slipData.Zip;
slip.cardType = slipData.CCType;

slip.appendOrderDesc(orderDesc);



Chapter 5, Reviewing the application code   89

Authorizing a purchase

Encoding a slip

To encode a slip, the application puts the slip information into a DER (Distin-
guished Encoding Rules) encoded string. Although the application can recreate 
the slip from the string, it cannot access the card number once it is encoded. 
The GenerateSlip function encodes the slip, and then recreates it, thus 
protecting the credit card information.

The following call from function GenerateSlip encodes the Slip object, then 
extracts the resulting DER string:

if (!slip.encode(processor))
{

PrintFmtError("Failed to encode slip",
slip.getStatusMessage());

}
asciiDER = slip.getDER();

Next, GenerateSlip creates a cursor object, saves the DER string to the cursor 
object, and calls the LiveWire database object to save the encoded string to the 
database in the LP_SLIP table:

var nextSlipID = GetNextSlipID();
if ((error = database.beginTransaction()))

PrintError("Could not begin a transaction in authorize().",
"Error code " + error + " was returned.",
"Please contact your system administrator.");

cursor = database.cursor("select * from LP_SLIP", true);
cursor.ID = nextSlipID;
cursor.slipDER = asciiDER;
if ((error = cursor.insertRow("LP_SLIP")))
{

cursor.close();
database.rollbackTransaction();
PrintError("Failed to insert slip into database, error ", error);

}
cursor.close();

database.commitTransaction();

Having saved the encoded slip, GenerateSlip now recreates the slip from the 
encoded one. The new slip, slip2, contains information in encoded form:

slip2 = new Slip(asciiDER);
if (slip2.bad())
{



Authorizing a purchase

90   Netscape LivePayment Developer’s Handbook

PrintFmtError("Failed to construct slip object from DER.",
slip2.getStatusMessage());

}
slip2.initMerchantOrderDesc(amount, currency);
slip2.appendMerchantOrderDesc(orderDescription);
slipID = nextSlipID;// set Global var slipID
return (slip2);

}

Authorizing a transaction

To authorize a transaction, the application creates a PayEvent object, and 
makes a call to the authorize method of the LivePayment processor object. 
This is how the Authorize function does it.

if ((authResult = processor.authorize(terminal, merchant, payevent, 
slip)))

{
avsFail = CheckAVS(payevent);
// Save transaction info to the database
SavePayevent(payevent, slip, avsFail, authResult,

authData.cardHolderName);
if (avsFail)
{

PrintAVSError(avsFail);
}
else
{

returnval  = true; // else, no errors so return TRUE
}

}
else
{

// Save transaction info to the database
SavePayevent(payevent, slip, false, authResult,

authData.cardHolderName);
PrintFmtError("Credit Card Authorization Failed.",
processor.getStatusMessage());

}

In this code sample, CheckAVS calls the Address Verification Service code to 
ensure that the address ans zip code furnished with the purchase matches the 
cardholder’s address and zip code.



Chapter 5, Reviewing the application code   91

Capturing a transaction

Capturing a transaction
The authorized amount must be captured, or charged to the purchaser’s credit 
card. This step usually takes place when the goods are to be shipped.

The LivePayment code for capturing a transaction is in capture.js. The following 
is the main code for capture.js:

// construct payevent object
//
if (merchantReference == null)
merchantReference = slip.merchantReference;

payevent = new PayEvent(merchantReference);
payevent.amount = purchaseCursor.amount;
payevent.authCode = purchaseCursor.authCode;
payevent.paySvcData = purchaseCursor.paySvcData;
payevent.avsResp = purchaseCursor.avsResp;

payevent.eventID = eventID;

//
// Perform the capture
//
if (processor.capture(terminal, merchant, payevent, slip, batch))
{

purchaseCursor.eventID = eventID;
purchaseCursor.eventTime = processor.eventTime;
purchaseCursor.status = "CAPTURED";
if ((error = purchaseCursor.updateRow("LP_PURCHASE")))
{

purchaseCursor.close();
database.rollbackTransaction();
PrintError("Failed to update LP_PURCHASE in database,
error",error);

}
}
else
{

purchaseCursor.close();
database.rollbackTransaction();
PrintFmtError("Failed to capture.",
processor.getStatusMessage());

}



Crediting a transaction

92   Netscape LivePayment Developer’s Handbook

The Capture function searches through the database for capturing transactions. 
When it finds one, it recreates the Slip object from its DER encoded string 
stored in the LP_SLIP table, creates a new PayEvent object, and makes a call 
to the capture method of the Processor object to execute the capture. After the 
capture, the transaction is changed to captured status.

Crediting a transaction
Think of a credit as the reverse of a capture. To credit a transaction, the system 
must retrieve the transaction from that database, reconstruct the slip, and 
communicate the credit to the acquirer bank.

The Credit function in credit.js ensures that the current batch is valid and not 
busy with a settle, then calls the DoCredit function.

The DoCredit function searches the database by purchase ID, selecting trans-
actions that are captured or crediting. When it finds the transaction to credit, it 
creates a new pay event with crediting status, reconstructs the slip, and 
performs the credit with the following call:

processor.credit(terminal, merchant, payevent, slip, batch)

If the credit call is successful, DoCredit calls SaveCreditEvent to record the 
credit event in the database for reference.

Settling a batch
The settling of the current batch is done in the settlebatch.js library. After 
obtaining the current batch, the system executes the following code.

preparetoSettle(batch, merchant, terminal, processor);
SettleBatch(batch, merchant, terminal, processor);

The call to PrepareToSettle checks that there are no incomplete transactions 
in the current batch and changes the status of the transactions to settling.

After making this check, the application can settle the batch. SettleBatch settles 
the batch by the following algorithm:

1. Add up the amount and number of purchases (debits) to settle.



Chapter 5, Reviewing the application code   93

Settling a batch

2. Add up the amount and number of credits to settle.

3. Insert the sales and credit counts and totals into the batch object.

4. Call processor.settleBatch to settle the batch.

5. Update the appropriate row in the LP_BATCH database table with the 
transaction information.



Settling a batch

94   Netscape LivePayment Developer’s Handbook



Chapter 6, Modifying the Starter Application Set   95

C h a p t e r

6

 

Modifying the Starter Application Set

 

 modifying the Starter Application Set, we recommend that you change only 
the LPStart HTML and .js files. By modifying other .js libraries, you could 

cause your application to behave incorrectly. However, if you do decide to 
modify the .js files, 

 

make a backup of the original files 

 

before making any 
modifications.

This chapter presents the following topics:

• Preparing to modify LPStart

• Modifying the Starter Application Set

I



Preparing to modify LPStart

96   Netscape LivePayment Developer’s Handbook

Preparing to modify LPStart
Before modifying LPStart, you need to understand the following facts and 
assumptions:

• The Starter Application Set assumes a single merchant, and a single item per 
purchase.

• You will need to modify the Starter Application Set when you want to 
integrate your specific products and web pages with the payment function-
ality provided with Netscape LivePayment.

For example, you’ll need to modify the LPStart application if you wish to 
dynamically generate product information or integrate a shopping basket 
into your site.

• You are free to modify the look and feel of the LPAdmin administration 
application interface.

• When deploying your application, your modified LPStart must be run under 
the same LiveWire Application Manager as your LPAdmin in order for them 
to share similar data structures.

• Read the comments in the HTML files. They contain information to help you 
in building your own pages. In addition, read Chapter 7, “Netscape 
LivePayment Starter Application Set Reference”.

• Have the code available when reading the remainder of this chapter.

Modifying the Starter Application Set
This section describes how to modify the LPStart application.

Modifying LPStart

When modifying the LPStart HTML pages, be careful of dependencies between 
files. Some HTML pages call on other pages to process form data. For example, 
the products.html page makes a call to the purchase.html page when a product 



Chapter 6, Modifying the Starter Application Set   97

Modifying the Starter Application Set

is purchased. The call is in the form of an ACTION executed when the 
purchase form is submitted. If you want to maintain the purchase.html file, you 
should provide the same parameters to the purchase.html file.

The following are the steps for modifying LPStart:

1. Copy the starter application files to a new directory

2. Change the database name

Use the livepay.sql file to create your database, modifying the following line 
as follows:

create database LIVEPAYMENT with log;

3. Indicate what credit cards you support

Before creating the database for your application, specify which credit cards 
you will accept. Enter the credit card types into the cardtype.unl file. To add 
or delete a card type, simply add or delete it from this file.

Note When adding or removing credit card types, make sure the last line of 
cardtype.unl ends with a carriage return.

To add or remove credit card types after you build the Starter Application 
Set, do so through your database’s SQL access tools (dbaccess for Informix, 
sqlplus for Oracle). Credit card types are stored in the LP_CARDTYPE 
table. See Chapter 7 for a description of the structure of the LP_CARDTYPE 
table.

4. Create the new database

On Unix systems, run the livepay.csh script to create the database.

On Windows NT (and Unix), you can use the Informix dbaccess tool to 
create the database using the livepay.sql SQL creation script. Refer to the 
Video sample application in the LiveWire Developer’s Guide for instructions 
on creating databases using dbaccess.

5. Replace or delete the sample HTML pages.

home.html—Replace or delete this page when you are ready to begin 
integrating the Starter Application Set into your web site; this page is only 
used to demonstrate the functionality of the application. If you delete this 
page, use the Application Manager’s modification option to change the 
default page to a different page.



Modifying the Starter Application Set

98   Netscape LivePayment Developer’s Handbook

6. Replace products.html with your own page.

The following parameter is required for generating a purchase amount and 
order description:

productID—A string containing a unique identifier for a particular product. 
For example, a unique product ID from an inventory database. This value 
must be passed/submitted to purchase.html.

If this parameter is not passed, the amount and order descriptions 
(request.amount and request.orderDesc) default to:

amount: 0

orderDesc: “NoDescription”

The productID may be passed in one of two ways to purchase.html:

• As an HTML form element named productID. For example, create a 
new page, such as:

<HTML>
...
<BODY>
...
<FORM method="POST" action="purchase.html">
... 
<!-- Unique product ID for a Netscape Lamp Shade from inventory
database-->
<input type=hidden name="productID" value="i059a">
...
<input type=Submit name="Submit" value="Purchase Lamp Shade">
</FORM>
...
</BODY>
</HTML>

The above HTML form contains two hidden form elements, one repre-
senting an amount of $50.00 (5000 cents), and one representing a 
description of the product (“Lamp Shade”). These fields are then passed on 
to purchase.html when the Submit button is clicked.

• As URL-encoded name-value pairs

redirect("purchase.html?productID=i059a");

In the above example, the product ID is passed as a parameter in the query 
string of the URL. See the LiveWire Developer's Guide for details about 
passing parameters in this fashion.



Chapter 6, Modifying the Starter Application Set   99

Modifying the Starter Application Set

7. Modify GetItemProperties function in purchase.js:

GetItemProperties is called from auth.html and returns a new instance of 
an ItemObject. To obtain your product/order amount and description 
based upon the productID passed into auth.html, you must modify 
GetItemProperties to perform a lookup in your own code or products 
database to find the item properties.

Replace the existing sample code in this function with your own code to 
perform a lookup, be it a simple “if else” structure for a small number of 
products, instructions to read from a text file, or to read from a database. 
After finding a particular item, you must assign the amount of the item, in 
cents, and a description to a new instance of an ItemObject as shown in 
the example code:

if (productID == "001")
item = new ItemObject("1800", "Mozilla Coffee Mug");

The amount is the first argument and must be a string representing the 
purchase amount of the item in cents. The orderDesc is the second 
argument and should be a brief phrase describing the product. To protect 
against the possibility of errors, if no product is found, the following code 
should be executed, as shown in the example code in purchase.js:

item = new ItemObject("0", "Invalid Item");

The item returned by this function (called from auth.html) is checked for 
validity to help prevent invalid items from being selected, so the above 
statement should be executed exactly as shown above if no product is 
found. 

Example: Suppose a merchant wishes to replace the example code with a table 
lookup scheme based on an inventory table, PRODUCTS. The PRODUCTS 
table contains several fields: ID, description, color, weight, price. This 
example assumes that “price” is already stored in the database in cents as a 
string value and “description” is a brief description of the product. The 
merchant might write the following code to replace the example code for 
creating a new “ItemObject” to hold the purchase amount and description:

function GetItemProperties( productID )
{
// Establish a cursor to select the product we’re looking for
cursor = database.cursor("select  amount, description from PRODUCTS
where ID=’" + productID + "’");

// Attempt to initialize the cursor
if (cursor.next())  

item = new ItemObject(cursor.price, cursor.description);



Modifying the Starter Application Set

100   Netscape LivePayment Developer’s Handbook

// Return an "invalid" ItemObject if no item was found
else

item = new ItemObject("0", "Invalid Item");
cursor.close();
return item;

} // END FUNCTION GetItemProperties

8. Modify CalcOrderTotal function in purchase.js

Use the CalcOrderTotal function, called by auth.html, to calculate the final 
total of a customer purchase. This is where a merchant might calculate sales 
tax, shipping & handling, fees, etc. The result returned from this function 
must be the total of the purchase, as a string, in cents. 

Example Suppose a merchant wants to calculate tax and add shipping & handling to 
all orders. The CalcOrderTotal function might be modified as follows:

function CalcOrderTotal( amount, shipping, taxRate )
{

// amount is the subtotal in cents
// shippingCents is amount of shipping to be added to the
// total
// taxRate is the taxation rate as a percentage (e.g.  0.0825)

// find amount with tax
amount = amount * (1 + taxRate);

// add shipping costs to get total of purchase
amount = amount + shippingCents;

// return the total amount to be authorized to "auth.html"
return amount;

} // END FUNCTION CalcOrderTotal

Notice that the example above shows two new parameters were added: 
shipping and taxRate. This function may be extended as necessary, as the 
example shows. Take care to reflect any changes to the function definition 
in auth.html where CalcOrderTotal is called.

9. Modify these HTML pages.

start.html—Modify the PROJECT object parameters in the "Configurable 
Parameters" section at the top of the page. All of the parameter values 
should be enclosed in quotes, and correspond directly with the parameters 
required for a LiveWire "database.connect(...)" statement.

Warning Do not change the names of any parameters, only their values.



Chapter 6, Modifying the Starter Application Set   101

Modifying the Starter Application Set

project.dbType - your database type (for example, "INFORMIX")

project.dbServer - your database server name 

project.dbUsername - your database login name

project.dbPassword - your database password

project.dbName - the name of your database. Change this to something 
other than "LIVEPAYMENT." This should have the same value for LPAdmin 
and LPStart.

You may also modify other parameters in this section:

project.acquirer = "FDC"

Only change this if your acquirer is someone other than First Data Corpo-
ration.

project.currency = "USD"

Only change this if the currency type for your site is other than United 
States Dollars

project.failOnAddr = "Y"

Keep value of "Y" if you want authorizations to fail on AVS Address 
mismatches. Only change to "N" if you want to ignore AVS Address 
mismatches. 

project.failOnZip = "Y"

Keep value of "Y" if you want authorizations to fail on AVS Zip code 
mismatches. Only change to "N" if you want to ignore AVS Zip code 
mismatches. Default is "Y."

build -o ...

You may wish to rename the .web file created by this build script for your 
own application. To do so, in the first line of the build file, change the 
filename indicated after the -o option. For example, to change the name of 
the application to MyPaymentApp.web from the default LPStart.web, 
change the first line to read:

build -o MYPaymentApp.web error.html home.html …

If you added or deleted files for your application, you need to add or delete 
entries in the build file.



Modifying the Starter Application Set

102   Netscape LivePayment Developer’s Handbook

10. Build and install the new application.

Run the build script from the application directory to build the new .web 
file. Install the application in the LiveWire Application Manager with an 
appropriate application name and external library parameters. See the entry 
for LPStart for the correct library name.

Refer to the LiveWire Developer’s Guide for information on installing 
LiveWire applications.



Chapter 5, Netscape LivePayment Starter Application Set Reference   103

C h a p t e r

7

 

Netscape LivePayment Starter
Application Set Reference

 

his chapter contains reference information for the Starter Application Set.

This chapter contains the following sections:

• Directory Structure

• LPStart HTML pages

• LPAdmin HTML pages

• LPAdmin Merchant Libraries

• Database schema

• Database tables

• Functions

• Batch states

• Transaction states

T



Directory Structure

104   Netscape LivePayment Developer’s Handbook

Directory Structure
The Starter Application Set directory structure is shown in Figure 7.1.

Figure 7.1  Starter Application Set directories

 

/images

/transact

LPAdmin

/ifx

/merchant_lib

/admin

Informix data files

LPAdmin transaction HTML files

Modifiable library files

Image files

Administration HTML files

LPAdmin home directory

/readonly_lib Non-modifiable libraries

LPStart

/transact LPStart transaction HTML files

LPStart home directory

/ora Oracle data files



Chapter 5, Netscape LivePayment Starter Application Set Reference   105

LPStart HTML pages

LPStart HTML pages
The following is a brief overview of the HTML files in the LPStart application.

Demonstration pages

Generic pages

Transaction pages

LPAdmin HTML pages
The following is a brief overview of the HTML files in the LPAdmin application.

home.html The main page for the LivePayment Starter Application Set. From 
here users can access the purchasing pages.

products.html A sample page provided for demonstration purposes. It contains 
a few sample products and shows how the purchasing and 
authorization process works in the Starter Application Set. This 
page would be modified or replaced with a merchant’s product 
information or with functions that display data from a product 
description database.

purchase.html An HTML form where customers enter billing information such as 
credit card number, expiration date, address, and so on.  May be 
modified by the merchant to include more information if desired.

error.html Prints a page indicating which particular error has occurred.

start.html Initializes object properties and establishes a database connec-
tion at application startup. It must be defined as the “initial page” 
in the LiveWire Application Manager.

auth.html Form handler for the Customer Information form.



LPAdmin HTML pages

106   Netscape LivePayment Developer’s Handbook

Administration pages

The following are the administration pages in the LPAdmin application, found 
in the admin directory.

adminhelp.html Displays help about administrative functions to administrators.

adminhome.html Main menu for the administrative functions.

cancelauth.html Used to cancel an authorized transaction.

changeauth.html Gives the user a choice to capture or cancel a particular transac-
tion.

changecred.html Gives the user the ability to credit a particular transaction.

manualcredit.html Used to perform a manual credit.

query.html The main Query screen that allows users to select transaction cri-
teria and run a query against the database.

querylist.html A page that dynamically constructs a table that shows the results 
from a query. It allows users to click on a transaction ID to see 
more information.

search.html The form handler for the query.html criteria selection form. Calls 
the functions that perform the query.

settle.html Used to settle a batch, or auto-capture and then settle the batch.

transview.html Dynamically constructed page that prints out information regard-
ing a particular transaction in a two-column tabular format.

viewbatch.html A dynamically constructed page that prints a list of batches cur-
rently stored in the database in HTML table format.

viewtrans.html A dynamically constructed page that prints a list of transactions 
currently stored in the database in HTML table format. It accepts 
parameters as properties of the Request object to determine 
what kinds of transactions will be printed out (such as failed 
authorizations, captured transactions, and so on). 



Chapter 5, Netscape LivePayment Starter Application Set Reference   107

LPAdmin Transaction Libraries

Generic pages

The following are the generic pages of the LPAdmin application, found in the 
lpadmin directory.

Transaction pages

The following are the transaction pages of the LPAdmin application, found in 
the transact subdirectory.

LPAdmin Transaction Libraries
The following are the libraries that perform the credit card transactions for 
LPStart. These libraries are found in the readonly_lib subdirectory. They are 
read-only and should not be modified.

error.html Form handler for the Customer Information form.

home.html Welcome page

start.html Initial application page. Designate this page as the initial page in 
the LiveWire Application Manager.

cancel.html Form handler for the Customer Information form.

capture.html Form handler for the changeauth.html form.

credit.html Code for performing a credit transaction and form handler for 
changecredit.html form.

settlebatch.html Form handler for the settle.html form.

authorize.js Functions relating to performing authorizations.

cancel.js Functions relating to canceling authorized transactions.

capture.js Functions relating to performing credit card captures.

common.js Functions that are of a general nature. Contains some informa-
tion retrieval functions, such default merchant reference genera-
tion functions.

credit.js Functions relating to performing credits.

settlebatch.js Functions relating to settling a batch of transactions.



LPAdmin Merchant Libraries

108   Netscape LivePayment Developer’s Handbook

LPAdmin Merchant Libraries
The following is a brief overview of the merchant (modifiable) libraries in the 
LivePayment Starter Application Set, found in the merchant_lib subdirectory. 
The functions available from those libraries are described on page 114.

config.js Functions related to a site’s configuration and validation of pur-
chase form data.

dynamic.js Functions that dynamically generate HTML output, such as 
dynamic generation of HTML drop-down list boxes.

error.js Functions related to formatting and printing error messages in a 
standard format.

generateid.js Functions that generate ID’s for the database.

purchase.js Functions used to purchase a product.

query.js Functions that relate to running transaction queries against the 
database. 

utility.js Generic utility functions.

verify.js Functions relating to verifying the correctness of data entered by 
the user, such as credit card number verification, zip code valida-
tion, and so on.



Chapter 5, Netscape LivePayment Starter Application Set Reference   109

Database schema

Database schema
The following figure illustrates the Starter Application Set’s database schema.

Figure 7.2  Starter Application Set Database Schema

Warning You should not delete or rename the existing tables or fields, because the 
Starter Application Set code depends on them. Also, you should not change any 
datatypes, field lengths, or integrity constraints for existing fields.

You may add fields to existing tables, but at your own risk. You may add new 
tables to the Starter Application Set database with no ill effects; this is the 
preferred method of extending the database.



Database tables

110   Netscape LivePayment Developer’s Handbook

Database tables
The Netscape LivePayment Starter Application Set database structure consists of 
tables used to store the transaction data and internal Starter Application Set data 
required to track transactions. Many of the fields are used to contain property 
values of various Netscape LivePayment objects. Specific details of these 
properties can be found in Chapter 8, “Using the LivePayment objects”.

LP_CARDTYPE table

Description A lookup table containing credit card types that are accepted by the 
LivePayment Starter Application Set. Not all card types stored in this table may 
be used by the merchant.

Fields The LP_CARDTYPE table contains the following fields:

LP_BATCH table

Description Contains a record for each batch used by the Starter Application.

cardtype Stores a string that the application uses to identify credit card 
types.

cardname Stores a string that is formatted for display purposes. While the 
application uses the representation in the cardtype field, this 
field contains a label for the card type that can be displayed to 
users and which has a more pleasant look.



Chapter 5, Netscape LivePayment Starter Application Set Reference   111

Database tables

Fields The LP_BATCH table contains the following fields:

LP_PURCHASE table

Description Keeps track of each transaction as it occurs. A new record is generated for each 
transaction undertaken by the LivePayment Starter Application Set.

id Contains a unique ID number assigned by the Starter Application 
Set. This number equates with the batchID field of the 
LP_PURCHASE table.

batchNumber Contains the batch number assigned by the acquirer. batchNum-
ber is a property of the Batch object. There is no correspon-
dence between the batchNumber and the id field above.

merchantReference Contains batch-related information provided by the merchant for 
tracking purposes. Note that there are 50 characters available for 
this field, but acquirers may limit this field to fewer characters. 
Some acquirers may limit data to only numeric characters as well. 
For example, FDC limits data to 10 numeric characters. This field 
is different from the merchantReference field in the 
LP_PURCHASE table. merchantReference is a property of the 
Batch object.

currency Contains a three character string designating the currency of the 
transactions in the batch.

totalSalesAmount Contains the total dollar amount of all credit card captures in the 
batch. totalSalesAmount is a property of the Batch object.

totalCreditAmount Contains the total dollar amount of all refunds in the batch. total-
CreditAmount is a property of the Batch object.

salesCount Contains the total number of captures in the batch. salesCount 
is a property of the Batch object.

creditCount Contains the total number of refunds in the batch. creditCount 
is a property of the Batch object.

status Contains the current status of the batch (OPEN, SETTLING, or 
SETTLED).

timesettled Contains the time and date the batch was settled.



Database tables

112   Netscape LivePayment Developer’s Handbook

Fields The LP_PURCHASE table contains the following fields:

id A unique, sequential field designator assigned by the Starter 
Application Set for each record in the table.

merchantReference Reserved for the merchants’ use. The field can be used for an 
indicator the merchant might wish to include with the transac-
tion, such as an invoice number. merchantReference is a prop-
erty of the PayEvent object. Note that there are 50 characters 
available for this field, but acquirers may limit it to fewer charac-
ters. Some acquirers may limit data to only numeric characters as 
well. For example, FDC limits data to 10 numeric characters. This 
field is different from the merchantReference field in the 
LP_BATCH table.

cardHolderName Contains the name of the person whose name appears on the 
credit card used in the transaction.

currency Contains a three character string designating the currency of the 
purchase.

amount Contains the dollar amount for which the transaction was made. 
amount is a property of the PayEvent object.

authCode Contains the authorization code returned from the acquirer who 
authorizes the transaction to take place. authCode is a property 
of the PayEvent object.

paySvcData Contains the payment service data provided by the acquirer. 
paySvcData is a property of the PayEvent object.

avsResp Contains the results of the address verification query to the 
acquirer. avsResp is a property of the PayEvent object.

eventID Contains an ID used for capturing or crediting. eventID is a 
property of the PayEvent object.

eventTime Contains the time the authorize, capture, or credit is approved by 
the acquirer. eventTime is a property of the PayEvent object.

slipID Contains a number used to link the LP_PURCHASE table with 
the LP_SLIP table.

batchID Contains a number used to link the LP_PURCHASE table with 
the LP_BATCH table.

status Contains the current status of the transaction. The possible trans-
action states that may appear in this field are stored in the 
StatusType lookup table.



Chapter 5, Netscape LivePayment Starter Application Set Reference   113

Database tables

LP_SLIP table

Description Contains a record for each slip generated during a transaction.

Fields The LP_SLIP table contains the following fields:

LP_MATCHQUERY table

Description Used to store results from administrative queries run from the Query tool. It is 
cleared every time a new query is run. 

Fields The LP_MATCHQUERY table contains the following field:

LP_STATUSTYPE table

Description A lookup table containing all available transaction and batch states. See “Trans-
action states” on page 115 and “Batch states” on page 115 for a list of all 
possible states which are stored in this table.

Fields The StatusType table contains the following field:

id Contains a unique ID number which equates with the slipID 
field of the LP_PURCHASE table.

slipDER Contains the ASCII slip DER returned by the getDER method of 
the Slip object. See the description of the Slip object for infor-
mation on what data can be obtained from the stored slip DER 
data.

id A unique integer that corresponds with the ID of a transaction.

statustype Contains a static list of all possible status types (OPEN, CRED-
ITED, and so on.). This field is not currently modified by any of 
the processes in the Starter Application Set.



Functions

114   Netscape LivePayment Developer’s Handbook

Functions
The following is a brief overview of the functions available in the LivePayment 
Starter Application Set. These functions are available for the merchant’s use 
and/or modification should it be required when integrating the Starter Appli-
cation Set with a merchant’s web site. Refer to the appropriate source code file 
for specific details pertaining to a given function.

Authorize

Description Used to authorize a new payment transaction. If the authorization fails, the 
function does not return. Instead, it calls one of the error functions, PrintFm-
tError or PrintError.

Library authorize.js

Parameters authData is an object that contains information about the customer, credit card, 
and order description. The specific properties of authData that are used in this 
function are:

amount - the amount of the transaction

currency - the currency type (e.g. USD)

orderDesc - a description of the order

cardHolderName - Full name as it appears on the card

cardNumber - credit card number

cardExpDate - expiration date

cardType - credit card type

address - address of card holder

zip - zipcode of card holder

merchantReference - a reference number that the merchant may assign to 
the transaction

Returns TRUE, if the operation succeeds. The function does not return if the authori-
zation fails, but rather calls one of the error functions, PrintFmtError or Print-
Error.



Chapter 5, Netscape LivePayment Starter Application Set Reference   115

Functions

AuthToCapturing

Description Changes the state of all authorized transactions to CAPTURING. Call the 
GetCurrentBatch function prior to calling AuthToCapturing in order to 
select the current open batch.

Library capture.js

Parameters batch is the Batch object associated with the transaction to be captured.

purchaseid is the unique id of the transaction to capture.

all is a boolean flag that tells whether or not to capture ALL AUTHORIZED 
transactions. If TRUE, all AUTHORIZED transactions will be changed to 
CAPTURING. If FALSE, then only the transaction indicated by purchaseid has 
its status changed to CAPTURING.

Returns None.

CalcOrderTotal

Description Calculate the total amount of the purchase.

Library purchase.js

Parameters amount is a sub-total for a purchase.

Returns The total amount of the purchase, including any modifiers such as shipping, 
state or local taxes, processing fees, etc.

CalcScore

Description Matches all of the user selected criteria values from the Query screen with the 
stored values in the database for each transaction stored in the LP_PURCHASE 
table. It returns a score, which represents the number of criteria values that 
exactly matched corresponding values in the database for a particular trans-
action.

Library query.js

Parameters scursor is a cursor pointing to a particular record in the LP_PURCHASE table.

Returns A numeric value representing how many of the parameters on the HTML query 
form matched values of the corresponding fields in the database.



Functions

116   Netscape LivePayment Developer’s Handbook

Cancel

Description Changes the status of an authorized transaction from AUTHORIZED to 
CANCELLED in the database. Note that this function does not cancel the autho-
rization with the acquirer. In order to cancel a transaction that has already been 
submitted to an acquirer, use Credit. 

Library cancel.js

Parameters authid is the ID of the transaction that will be cancelled.

Returns TRUE if the operation is successful.

Capture

Description Looks for transactions which have a status of AUTHORIZED or CAPTURING 
and attempts to capture those items. Upon success, it changes the transaction 
status to CAPTURED. See the library file for details on this function.

Library capture.js

Parameters id is the ID of the purchase as it relates to the LP_PURCHASE table.

batch is the Batch object associated with the transaction to be captured.

merchant is the Merchant object, previously created.

terminal is the Terminal object, previously created.

processor is the Processor object, previously created.

merchantReference is the merchant reference string for the capture.

all is a boolean variable. If TRUE, capture all transactions in the CAPTURING 
state. Otherwise, capture only the transaction indicated by "id" parameter.

Returns TRUE if the capture was successful; FALSE if it was not.

CentsToDollarStr

Description Converts a monetary value expressed in cents into a monetary value expressed 
in the dollars.cents format by shifting the decimal point two positions to the 
left.

Library authorize.js



Chapter 5, Netscape LivePayment Starter Application Set Reference   117

Functions

Parameters cents is a string representing a value in cents.

Returns A string representing the input value in dollars.

CheckAVS

Description Determines if the Address Verification Service (AVS) checks on the address and 
zip code pass or fail. 

Library authorize.js

Parameters payevent is a PayEvent object that contains AVS data returned by the acquirer 
after the authorization.

Returns An integer indicating which part of the AVS check failed: address or zip.  
Returns a 0 for no failures, 1 for address fail, 2 for zip fail.

Confirm

Description Accepts a boolean argument and a string argument. The boolean argument is 
used to determine whether or not to print out a message confirming success for 
an arbitrary operation, or failure for that operation. The string argument is used 
to print out what type of operation is to be confirmed as successful or not.

Library dynamic.js

Parameters success is a boolean variable indicating whether or not to print out a message of 
success or failure of an operation.

type is a string to indicate what type of operation succeeded or failed (such as 
CREDIT).

Returns None.

CountActiveParams

Description Counts the number of criteria on the Query page for which the user has filled 
in values. It returns the total number of non-blank criteria fields. See the library 
file for details on this function.

Library query.js

Parameters None.



Functions

118   Netscape LivePayment Developer’s Handbook

Returns The number of items in the query form which contain values to be matched.

CreateCreditEvent

Description Creates a new record in the database and sets its status to CREDITING. See the 
library file for details on this function.

Library credit.js

Parameters batch is a batch object associated with the current batch.

purchaseid is the ID of the CAPTURED transaction that is to be credited.

Returns A PayEvent object associated with the credit transaction.

CreateManualCreditEvent

Description Creates a new PayEvent object, initializes some of its properties and sets its 
status to CREDITING.

Library credit.js

Parameters batch is a batch object associated with the current batch.

merchantReference is a transaction reference number created by the merchant.

creditSlipID is the slipID used when inserting the transaction record.

creditCardHolderName is the name of the card holder.

credtAmount is the dollar amount of the credit transaction.

Returns The PayEvent object.

CreatePayEvent

Description Creates a new record in the LP_PURCHASE table and sets its status to AUTHO-
RIZING.

Library authorize.js

Parameters amount is the amount of the authorization.

Returns A PayEvent object initialized with the merchantReference, amount, and ID.



Chapter 5, Netscape LivePayment Starter Application Set Reference   119

Functions

Credit

Description Creates a new record in the LP_PURCHASE table and sets its status to 
CREDITING. This function calls the DoCredit function upon successful 
completion.

Library credit.js

Parameters batch is the batch object associated with the current batch.

All other parameters are simply passed through to the DoCredit function, 
which is called from within this function.

Returns TRUE if the batch is in the OPENED status and the credit may take place; FALSE 
otherwise.

DoCredit

Description Performs the actual credit operation that refunds the previously captured 
amount to the customer’s account.

Library credit.js

Parameters batch is the Batch object associated with the current batch.

purchaseid is the ID of the credit transaction which is currently in the 
CREDITING state.

merchant,

terminal,

processor are objects required for the credit transaction to take place (previ-
ously created).

Returns TRUE if the credit is successful; FALSE otherwise.

DollarStrToCents

Description Converts string dollar values to cents.

Library utility.js

Parameters dollarstr is a string representing a dollar amount.



Functions

120   Netscape LivePayment Developer’s Handbook

Returns A numeric value representing the input string converted from dollars to cents.

DynSelect

Description Dynamically generates an HTML selection list box based on data stored in a 
lookup table in the database.

Library common.js

Parameters listname is the name to be given to the HTML select box

size is the size of the select box, where a 1 indicates a dropdown box, and 
greater than one indicates a scrolling list box.

multiple is a boolean variable indicating if multiple selections are allowed 
(TRUE indicates multiple selections are allowed).

handlerText is a string representing a client-side JavaScript event handler for 
the select box.

selectValue is a string representing the item to be selected by default upon the 
lists creation.  "" indicates no selection by default.

blankline is a boolean value. If it is TRUE, a blank line will appear in the select 
box; if it is FALSE, no blank line will appear.

Returns None.

EmitFooter

Description Writes a standard closing HTML block to the screen.

Library dynamic.js

Parameters None.

Returns None.

EmitHeader

Description Writes a standard HTML header to the screen. It accepts a string as input for the 
HTML <TITLE> block.

Library dynamic.js



Chapter 5, Netscape LivePayment Starter Application Set Reference   121

Functions

Parameters title is a string that contains the title of the page.

Returns None.

FailOnAVS

Description Returns a boolean value indicating whether an authorization should fail based 
on the AVS checks that were provided. This function determines if the authori-
zation will fail by calling project.failOnAddr and project.failOnZip. See the 
library file for more on this function.

Library config.js

Parameters avsFail is an input parameter representing the numeric code resulting from 
CheckAVS indicating what kind of AVS failure occurred, if any. If avsFail is 1, it 
indicates an address failure, if avsFail is 2, it indicates a zip code failure.

Returns TRUE if the transaction should fail because of the AVS failure, or FALSE if it 
should succeed.

GenerateMerchantReference

Description Create a merchantReference number based on the purchase ID. This creates 
a default merchant Reference if the merchant does not specify one.

Library common.js

Parameters None.

Returns The merchantReference number.

GenerateSlip

Description Generates an encrypted slip for the current transaction and stores it in the 
LP_SLIP table of the database.

Library authorize.js

Parameters request is a copy of the Request object that contains the following properties 



Functions

122   Netscape LivePayment Developer’s Handbook

used in this procedure:

amount - the amount of the transaction.

currency - the currency type (e.g. USD).

orderDesc - a description of the order.

cardNumber - a credit card number.

cardExpDate - expiration date.

cardType - credit card type.

address - address of card holder.

zip - zipcode of card holder.

merchantReference - a reference number that the merchant may assign to 
the transaction

Returns The constructed Slip object.

GetCardType

Description Given a particular slip ID, this function returns the cardType indicated by that 
slip. If no slip matches the slip ID, this function returns an empty string ("").

Library common.js

Parameters slipid is the ID of the slip associated with the transaction in question.

Returns Given a particular slip ID, this function returns the cardType indicated by that 
slip. If no slip matches the slipID, this function returns an empty string ("").

GetCurrentBatch

Description Returns the current batch number if a batch exists with the status OPEN or 
SETTLING. If no batch exists with the status of OPEN or SETTLING, then a new 
batch number is obtained from the acquirer and its status is set to OPEN. See 
the library file for details on this function.

Library common.js

Parameters merchant, terminal, processor, are objects required for obtaining a new batch 
number from acquirer (previously created).

Returns The current batch number according to the acquirer.



Chapter 5, Netscape LivePayment Starter Application Set Reference   123

Functions

GetItemProperties

Description Returns an ItemObject containing the cost and description of the product.

Library purchase.js

Parameters productID is a string representing a unique identifier for a product for sale on 
the web site.

Returns An ItemObject containing the cost of the object in a whole integer (e.g. cents) 
and a brief description of the product.

GetNextBatchID

Description Gets the next sequential batch ID number by incrementing the current batch ID 
number, stored as a property of the Server object, by one.

Library generateid.js

Parameters None.

Returns The next available, unique ID for use in the Server table when a new batch 
record is created (when a new batch is opened).

GetNextEventID

Description Gets the next sequential event ID number by incrementing the current event ID 
number, stored as a property of the Server object, by one.

Library generateid.js

Parameters None.

Returns The next available, unique ID for use in the LP_PURCHASE table when a new 
event is created in a particular batch.

GetNextPurchaseID

Description Gets the next sequential purchase ID number by incrementing the current 
purchase ID number, stored as a property of the Server object, by one.

Library generateid.js

Parameters None.



Functions

124   Netscape LivePayment Developer’s Handbook

Returns The next available unique id for the LP_PURCHASE table.

GetNextSlipID

Description Gets the next sequential slip ID number by incrementing the current slip ID 
number, stored as a property of the Server object, by one.

Library generateid.js

Parameters None.

Returns The next available unique id for the LP_SLIP table.

GetTitleString

Description Creates dynamic titles for pages that are used for multiple views of data.  
Returns an HTML title string appropriate for the type of data being displayed on 
a page.

Library dynamic.js

Parameters viewtype is a type of list requested can be one of 5 types:

"auth" - authorized transactions to capture or cancel

"credit" - captured transactions to credit

"view" - view only, no hyperlinks on transaction id

"current" - transactions in current batch

"errors" - view failed transactions

batchid is the ID of the batch a transaction belongs to, if appropriate for the 
viewtype.

Returns A string of HTML that contains a title appropriate for the type of transaction list 
that will be displayed in viewtrans.html.

IsAmericanExpress, IsAmEx

Description Determines if a given credit card number is a valid number for American 
Express.

Library verify.js

Parameters cc is a string representing a credit card number.



Chapter 5, Netscape LivePayment Starter Application Set Reference   125

Functions

Returns TRUE, if the credit card number is a valid American Express card number; 
FALSE, otherwise.

IsAnyCard

Description Determines if a credit card number is a valid number. It tests the number 
against all accepted card types (such as Visa, MasterCard, and so on) and calls 
IsCC to perform Luhn Mod-10 testing on the number. It returns a boolean value 
indicating success or failure.

Library verify.js

Parameters cc is a string representing a credit card number.

Returns TRUE, if the credit card number is any valid credit card number for any of the 
accepted card types; FALSE, otherwise.

IsBlank

Description Used to test for an empty or null string. Not used for boolean or numeric 
variables. Returns TRUE if the string is empty or null; otherwise, it returns 
FALSE.

Library utility.js

Parameters teststr is the string to be tested to ensure that the string is null.

Returns TRUE, if the string is null or is an empty string, ""; otherwise FALSE.

IsCardMatch

Description Determine if a credit card number is valid.

Library verify.js

Parameters cardType is a string representing the credit card type.

cardNumber is a string representing a credit card number.

Returns TRUE if the credit card number is valid for the particular credit card type given 
in cardType.



Functions

126   Netscape LivePayment Developer’s Handbook

IsCarteBlanche, IsCB

Description Determines if a given credit card number is a valid number for Carte Blanche.

Library verify.js

Parameters cc is a string representing a credit card number.

Returns TRUE, if the credit card number is a valid Carte Blanche card number; FALSE, 
otherwise.

IsCC

Description Determines if a credit card number passes the Luhn Mod-10 test.

Library verify.js

Parameters st is a string representing a credit card number.

Returns TRUE, if the credit card number passes the Luhn Mod-10 test; FALSE, otherwise.

IsDinersClub, IsDC, IsDiners

Description Determines if a given credit card number is a valid number for Diner’s Club.

Library verify.js

Parameters cc is a string representing a credit card number.

Returns TRUE, if the credit card number is a valid Diner’s Club card number; FALSE, 
otherwise.

IsDiscover

Description Determines if a given credit card number is a valid number for Discover.

Library verify.js

Parameters cc is a string representing a credit card number.

Returns TRUE, if the credit card number is a valid Discover card number; FALSE, 
otherwise.



Chapter 5, Netscape LivePayment Starter Application Set Reference   127

Functions

IsEnRoute

Description Determines if a given credit card number is a valid number for en Route. 

Library verify.js

Parameters cc is a string representing a credit card number.

Returns TRUE, if the credit card number is a valid en Route card number; FALSE, 
otherwise.

IsExistingPurchaseID

Description Determine if a purchase ID has an entry in the LP_PURCHASE table.

Library utility.js

Parameters id is the id of the transaction in question.

Returns TRUE if the ID exists, FALSE otherwise.

IsJCB

Description Determines if a given credit card number is a valid number for JCB.

Library verify.js

Parameters cc is a string representing a credit card number.

Returns TRUE, if the credit card number is a valid JCB card number; FALSE, otherwise.

IsMasterCard, IsMastercard, IsMC

Description Determines if a given credit card number is a valid number for MasterCard.

Library verify.js

Parameters cc is a string representing a credit card number.

Returns TRUE, if the credit card number is a valid MasterCard card number; FALSE, 
otherwise.



Functions

128   Netscape LivePayment Developer’s Handbook

IsNum

Description Used to test for a numeric string variable. Returns 

Library utility.js

Parameters numstr is a string that will be tested to ensure that each character is a digit.

Returns TRUE if all characters are from 0-9; otherwise, it returns FALSE.

IsValidDay

Description Validates a day of the month.

Library utility.js

Parameters daystr is a string representing a day of the month.

Returns TRUE, if the string represents a number from 1 to 31; otherwise, it returns 
FALSE.

IsValidPrice

Description Validates a string representing a price. 

Library utility.js

Parameters pricestr is a string representing a price.

Returns TRUE, if it the value is a valid price, containing characters from 0-9 and not 
more than one (.) period for an optional decimal place. Returns TRUE if these 
criteria are met; otherwise, it returns FALSE.

IsValidPurchaseID

Description Validates a given purchase ID. Returns TRUE if the ID exists in the 
LP_PURCHASE table; otherwise, it returns FALSE.

Library common.js

Parameters id is the ID of the transaction in question.

Returns TRUE, if the ID is valid and exists in the LP_PURCHASE table; otherwise, it 
returns FALSE.



Chapter 5, Netscape LivePayment Starter Application Set Reference   129

Functions

IsValidYear

Description Validates a string representing the year. Returns TRUE if the string is a 4-digit 
number; otherwise, it returns FALSE.

Library utility.js

Parameters yearstr is a string representing a 4-digit year.

Returns TRUE if the string represents a 4-digit number; otherwise, it returns FALSE.

IsValidZip

Description Determines if the zip code provided is a 5-digit string containing only numeric 
characters. It is used to verify zip codes provided in the customer information 
form.

Library config.js

Parameters zipstr is a string representing a 5-digit zip code.

Returns TRUE, if the string is 5-digits long; otherwise, it returns FALSE.

IsVISA, IsVisa

Description Determines if a given credit card number is a valid number for VISA.

Library verify.js

Parameters cc is a string representing a credit card number

Returns TRUE, if the credit card number is a valid VISA number; FALSE otherwise.

ItemObject

Description An object constructor intended to represent a typical item for sale on a web 
site, comprised of an amount, and a description. You may modify this 
constructor to hold additional information.

Library purchase.js

Parameters amount is the amount/cost of the item; it must be a whole integer (e.g. cents)

description is a short description of the item.



Functions

130   Netscape LivePayment Developer’s Handbook

Returns None.

MakeValidMerchantReference

Description Trims down merchantReference string, if necessary, to be within the 
acceptable number of characters for the given acquirer. Returns the 
merchantReference string.

Library common.js

Parameters acquirer is a string representing the acquirer.

merchantReference is a string representing a merchantReference identifier to 
be trimmed, if necessary.

Returns A merchantReference string that is to be trimmed, if necessary, to the 
acceptable number of characters for the given acquirer.

MatchShipToBill

Description Maps billing properties of the Request object to the shipping properties in the 
case a user has checked a box on the form indicating that Shipping Information 
is the same as Billing Information.

Library config.js

Parameters Request is the LiveWire Request object resulting from a call from 
purchase.html and containing properties associated with the form elements 
contained within the form in purchase.html.

Returns Modified Request object properties for shipping information to match the 
corresponding billing information.

Note If the form element names from "purchase.html" referenced below are changed, 
this function must be altered to reflect the changes to those HTML form-
element names, or mapping may cease to function correctly.



Chapter 5, Netscape LivePayment Starter Application Set Reference   131

Functions

PrepareToSettle

Description Changes the batch status to SETTLING. It then calls the Credit and Capture 
functions to attempt to complete any pending credits or captures still in the 
CREDITING or CAPTURING state before settling the batch. This function 
should be called prior to calling SettleBatch, which actually settles the batch 
with the acquirer. See the library file for details on this function.

Library settlebatch.js

Parameters batch is the Batch object related to the batch being settled.

merchant,terminal,processor are objects, previously created, that are required 
to perform a processor.settle operation.

Returns None.

PrintAVSError

Description Prints an output message describing the reason for an AVS failure. Failure is 
either due to an address or zip code mismatch.

Library dynamic.js

Parameters avsFail is an integer indicating the failure/success status of the AVS data 
returned by the Acquirer after an authorization.

Returns None.

PrintBatchItem

Description A generic function called by the PrintSettledBatch function to format the 
screen output of a two-column batch report.

Library dynamic.js

Parameters label is the label for a row item in a table.

val is a string or number to be printed as a row item described by the label.

Returns None.



Functions

132   Netscape LivePayment Developer’s Handbook

PrintError

Description Dynamically generates an HTML error page based on the parameters passed to 
the function. It is used to print out errors of a generic nature, not associated 
with a transaction failure.

Library error.js

Parameters premsg is a string indicating the first message to be printed. This first message is 
usually the "title" of the error.

info is the description of the error.

postmsg is usually a string containing a suggested course of action to resolve 
the error.

Returns None. Sets CLIENT object properties: lpErrno, lpErrTitle, lpErrMsg and 
lpErrEnd, then redirects to error.html.

PrintFmtError

Description Dynamically generates an HTML error page based on information received 
from the processor. It is intended for use when a processing error has occurred 
and information about that error must be returned to the user. For example, if a 
batch fails to settle because the totals do not match between the merchant and 
acquirer, this function is called to report the specific error that the Processor 
object returned.

Library error.js

Parameters premsg is a string indicating the first message to be printed. This first message 
is usually the "title" of the error.

fmtmsg is a string that describes the error. Used in this sample application to 
pass the status message from the processor method getStatusMessage.

Returns None. Sets CLIENT object properties: lpErrno, lpErrTitle and lpErrMsg, then 
redirects to error.html.

PrintReceipt

Description Used to output the data relevant to a given purchase to the screen by the Print-
ReceiptItem function. The output from this function may be printed from the 
customer’s browser and used as a receipt. This function may be customized.



Chapter 5, Netscape LivePayment Starter Application Set Reference   133

Functions

Library dynamic.js

Parameters pay is the PayEvent object associated with the purchase.

desc is a string describing the purchase.

Returns None.

PrintReceiptItem

Description A generic function called by the PrintReceipt function to format the screen 
output of a transaction receipt line item.

Library dynamic.js

Parameters label is the label for a row item in a table.

val is a string or number to be printed as a row item described by the label.

Returns None.

PrintSettledBatch

Description Used to output the data relevant to a given batch to the screen by the PrintBat-
chItem function.

Library dynamic.js

Parameters batch is a Batch object that contains information to be printed.

Returns None.

PrintTrans

Description Dynamically creates a screen output of data regarding a particular transaction.

Library dynamic.js

Parameters cursor is a cursor object that points to the transaction.

Returns None.



Functions

134   Netscape LivePayment Developer’s Handbook

PrintTransItem

Description Called by PrintTrans and generates formatting for each line item passed to it.

Library dynamic.js

Parameters label is the label for a row item in a table.

val is a string or number to be printed as a row item described by the label.

Returns None.

Query

Description Accepts all of the criteria values the user entered on the Query screen and finds 
all of the transactions that exactly match all of the non-blank values entered. It 
determines a match by checking the score of the query for each transaction 
(see CalcScore) against the count of non-blank criteria values (see CountAc-
tiveParams). If the numbers are equal there is a match, and the ID of the 
matched transaction is stored in the LP_MATCHQUERY table. This function 
loops through every transaction in the LP_PURCHASE table.

Library query.js

Parameters None.

Returns None.

QueryCleanup

Description Deletes all records from the LP_MATCHQUERY table from the previous query 
to prepare for a new set of results.

Library query.js

Parameters None.

Returns None.

RemoveAlpha

Description Removes dashes, spaces, and other non-numeric characters from a credit card 
number.



Chapter 5, Netscape LivePayment Starter Application Set Reference   135

Functions

Library utility.js

Parameters cardNumber is a credit card number.

Returns The credit card number with all dashes, spaces, and other non-numeric 
characters removed.

SaleObject

Description An object constructor used to contain and pass values associated with a 
purchase to the Authorize function or for a manual credit. It is intended to be 
called from a form handler, which formats user input before calling Authorize 
or GenerateSlip.

Library common.js

Parameters amount is the amount of the sale, as a non-zero, non-negative integer (e.g. 
must be a value in cents, for US currency).

currency is the currency for the transaction (3-letter code).

orderDesc is a description of the order

cardHolderName is the first and last name of the credit card holder, as it 
appears on the card.

cardType is the type of credit card (e.g. Visa, MasterCard, etc.).

cardNumber is a credit card number (must contain only digits 0-9, no spaces or 
dashes).

cardExpDate is the card expiration date (must be of the form YYYYMM).

address is the billing address for the card.

zip is the billing zip/postal code for the card.

merchantReference is a string for future reference.

Returns A new instance of the object.



Functions

136   Netscape LivePayment Developer’s Handbook

SaveCreditEvent

Description Saves the processor information about a particular transaction to the 
LP_PURCHASE table and changes the transaction state to CREDITED. This 
function is to be called after the actual credit has been performed via communi-
cation with the acquirer across the Internet.

Library credit.js

Parameters payevent is a payevent object associated with the completed credit.

slip is a slip object associated with the purchase that was credited.

Returns None.

SavePayEvent

Description Saves the processor information about a particular transaction to the 
LP_PURCHASE table and changes the transaction state to AUTHORIZED.

Library authorize.js

Parameters payevent is the PayEvent object previously constructed that contains AVS 
data returned by the acquirer after the authorization.

slip is the previously constructed slip object associated with the authorization.

avsFail is the code indicating AVS failure or success.

authSucceed is the boolean value returned by the authorization indicating 
success or failure of the authorization.

Returns None.

SettleBatch

Description Settles the current batch with the acquirer and changes the transaction state to 
SETTLED.

Library settlebatch.js

Parameters batch is a Batch object related to the batch being settled.

merchant, terminal, and processor are objects, previously created, that are 
required to perform a processor.settle operation.



Chapter 5, Netscape LivePayment Starter Application Set Reference   137

Functions

Returns None.

StateList

Description Returns a dynamically generated dropdown list box for selecting a state

Library dynamic.js

Parameters listname is the name of the dropdown list to be created.

site is the size of the dropdown list to be created.

multiple is TRUE or FALSE if the list should allow multiple selections.

handlerText is the optional JavaScript handler for the selected value.

selectValue is the default value to be selected.

Returns A dynamically generated dropdown list box for selecting state.

VerifyPurchaseData

Description Used to validate the user input provided in the Customer Information form 
(purchase.html). It verifies that required fields are not left blank, and where 
possible it validates the data input into the fields by calling such functions as 
IsAnyCard and IsValidZip.

Library config.js

Parameters request is a copy of the request object from the purchase.html input form.

Returns None.

Notes This function could be modified to validate additional fields from 
purchase.html.

ViewTransaction

Description Dynamically generates a listing of information regarding a given transaction. 
The information is presented in two-column tabular format on the screen.

Library dynamic.js

Parameters transid is an integer specifying the transaction from which information will be 
taken and output to the user.



Batch states

138   Netscape LivePayment Developer’s Handbook

Returns None.

Batch states
The following states exist for a batch. The current state for any given batch is 
stored in the status field of the LP_BATCH table:

Transaction states
The following states exist for a transaction. The current state for any given 
transaction is stored in the status field of the LP_PURCHASE table:

OPENED The batch is currently open. There will only be one batch in this 
state at any given time.

SETTLING The batch is currently in the process of being settled with the 
acquirer. There will only be one batch in this state at any given 
time. No captures or credits may take place while a batch is in 
this state.

SETTLED The batch has been properly settled with the acquirer.

AUTHFAILED The transaction was not authorized by the acquirer.

AUTHORIZED The transaction has been authorized by the acquirer.

AUTHORIZING The processor is currently attempting to authorize the transaction 
with the acquirer.

AVSFAILED The address verification failed. For the default Starter Application 
Set configuration, any AVS failure on zip code or address fields 
equates to a failed authorization. This behavior may be modified 
in the code if desired.

CANCELLED The authorization was canceled by the merchant.

CAPTURED The authorized funds for the transaction have been successfully 
captured.

CAPTURING The authorized funds for the transaction are in the process of 
being captured.



Chapter 5, Netscape LivePayment Starter Application Set Reference   139

Transaction states

CREDITED The previously credited funds for the transaction have been 
successfully refunded to the customer’s account.

CREDITING The previously captured funds for the transaction are in the 
process of being refunded to the customer’s account.

SETTLED The captured funds for the transaction have been collected

SETTLING The captured funds for the transaction are in the process of 
being collected.



Transaction states

140   Netscape LivePayment Developer’s Handbook



 

Part 3, Creating a LivePayment application from the ground up   

 

141

 
3

 

Creating a LivePayment 

application from the ground up

 

• Using the LivePayment objects

• LivePayment object reference



142   Netscape LivePayment Developer’s Handbook



Chapter 8, Using the LivePayment objects   143

C h a p t e r

8

 

Using the LivePayment objects

 

his chapter provides an overview and description of the LivePayment 
LiveWire capabilities. It includes a brief description of the LPAuthOnly 

sample application. This chapter assumes you are familiar with the basics of 
LiveWire and JavaScript. You should have already read the 

 

LiveWire Developer’s 
Guide, 

 

which explains how to use LiveWire. You should have some 
programming experience with a programming language such as Pascal, C, or 
Visual Basic. Some background in object-oriented programming is recom-
mended. 

Before writing your LiveWire credit card processing application, you should 
read Chapter 3, “Payment application concepts”, as well as this chapter.

This chapter contains the following sections:

• LivePayment objects overview

• Developing with LivePayment

• Using LivePayment objects to process payments

• Using the LPAuthOnly sample application 

T



LivePayment objects overview

144   Netscape LivePayment Developer’s Handbook

LivePayment objects overview
LivePayment contains objects for use with the LiveWire development 
environment. LiveWire enables you to create server-based applications similar 
to Common Gateway Interface (CGI) programs. 

LiveWire’s scripting language is called JavaScript. JavaScript is a compact, 
object-based scripting language for developing client and server Internet appli-
cations. 

LivePayment provides you with an additional set of predefined JavaScript object 
types to use on the server to accept and process credit card transactions on a 
web site. An object is a construct with properties. Properties are JavaScript 
variables and can be other objects. Functions associated with an object are 
known as methods.

LivePayment contains the following objects:

• Batch

• Merchant

• Processor

• PayEvent

• Slip

• Terminal

For information on using these objects, see “Using LivePayment objects to 
process payments” on page 152.

Developing with LivePayment
In general, developing a LiveWire application using the LivePayment objects is 
very similar to developing any LiveWire application. This section contains 
instructions for using the LivePayment objects in LiveWire. It does not contain 
an explanation of how to develop a LiveWire application. For general instruc-
tions on developing an application in LiveWire, see the LiveWire Developer’s 
Guide. 



Chapter 8, Using the LivePayment objects   145

Developing with LivePayment

To construct an application using LivePayment’s objects, follow these basic 
steps:

1. Install the Enterprise server, LiveWire, the database, and LivePayment. To 
install your database, follow the installation instructions that came with your 
database. To set up your database, plan out what information you want to 
store there and how to store it. For ideas on what tables and fields you 
might use, see the Starter Application Set.

2. Create the source files for the payment application in Navigator Gold or a 
text editor and save them on the server. When you create your application, 
you need to do the following:

• Use the <SERVER> tags to embed your JavaScript in HTML.

• Use registerNativeFunction in your application’s initial page.

• Use registerLivePayment to register the LivePayment objects on each 
page that calls them (if necessary).

• Develop your payment application, using LivePayment’s objects, 
properties, and methods. Refer to Chapter 3, “Payment application 
concepts” for more information. Also refer to the sample applications.

• Use the LivePayment error status methods to check for errors in your 
application.

3. Build the application in LiveWire (or rebuild it, if it has already been built), 
using the site manager or the LiveWire compiler.

4. Install the application in LiveWire if it is not installed already. If it is already 
installed, restart it.

5. Run the application.

6. Creating an application is an iterative process. After creating, building, 
installing, and running the application, you will probably need to change 
the application, rebuild it, restart it, and run it again.

7. Run the application in loopback mode and test mode before using it in 
production mode. For more information, see “Changing LivePayment 
operating modes” on page 28.



Developing with LivePayment

146   Netscape LivePayment Developer’s Handbook

8. Get your application certified by your acquirer before running live.

9. Run the application in production mode.

For information on installing the Netscape products and the database, see the 
documentation for those products. For information on building, installing, and 
running LiveWire applications, see the LiveWire Developer’s Guide.

Embedding LivePayment JavaScript in 
HTML

When you embed your JavaScript code within HTML, all references to the 
objects, properties, and methods must be within the HTML tags <SERVER> and 
</SERVER>. These tags indicate that the objects can only be invoked and 
executed on the server side of LiveWire, as opposed to the client side. The tag 
<SERVER> precedes the JavaScript statements, and </SERVER> follows them. 
The tags enclose one or more JavaScript statements. For more information, see 
the LiveWire documentation.

Registering LivePayment objects in 
LiveWire 

The LivePayment objects are not native LiveWire objects. There are two steps 
involved in registering the LivePayment objects:

1. On the project’s initial page, register the function that registers LivePayment 
objects as native functions in LiveWire (registerNativeFunction).

2. Depending upon how you used registerNativeFunction, before the 
objects are called on a page you may need to register the LivePayment 
objects with LiveWire on that page (registerLivePayment).

First you need to register the registerLivePayment function and the shared 
library in which the function is located. You use registerNativeFunction on 
the project’s initial page (the page that is loaded when the client first accesses 
the application). The following example shows registering the objects and the 
library:



Chapter 8, Using the LivePayment objects   147

Developing with LivePayment

<HTML>
<TITLE>Netscape LivePayment</TITLE>
<SERVER>

if (project.livepay == null)
{
project.livepay = registerNativeFunction("registerLivePayment",

"/usr/ns-home/bin/https/libccp.so",
"registerLivePayment", "true");

}

</SERVER>
</HTML>

In this example, “project.livepay” is a Boolean property of the project object, 
which indicates whether the function registerLivePayment has been success-
fully registered for the LivePayment objects. The registerLivePayment 
function registers the LivePayment objects, and “/usr/ns-home/bin/https/
libccp.so” is the full path of the LivePayment shared library on the system. If 
you include “true” as the fourth parameter, you do not need to register the 
LivePayment functions on each page that calls them. If you do not include 
“true” or if you use “false” instead, you have to register the LivePayment 
functions on each page using registerLivePayment.

The following example demonstrates registering the LivePayment objects on 
the page that calls them:

<HTML>
<SERVER>

if (project.livepay == "true") //all properties of the project object
 //are strings

{
result = registerLivePayment();
if (!result)

write("Register LivePayment objects failed");
}
else
{
//
// You can start using LivePayment objects in this page now
//
}

</SERVER>
</HTML>

This example registers the LivePayment objects for this page and gives an error 
message if the registration is not successful.



Developing with LivePayment

148   Netscape LivePayment Developer’s Handbook

Creating instances of LivePayment 
objects

The objects in LivePayment are predefined object types that have specific 
methods and properties. You create object instances of these object types using 
the new operator. 

For example, to create an instance of a Merchant object, the syntax might be:

merchant = new Merchant ("00002650999", "Netscape")

This creates an instance of the Merchant object type called “merchant” and 
includes parameters for the merchant number and merchant name. 

If you provide the correct parameters to create an object, you should not get 
any errors. However, you can check that the object was created successfully 
using the error status methods. For more information, see “Using error status 
methods” on page 150.

Some methods create and return objects. For example, the method getCurrent-
Batch creates and returns a Batch object representing a current batch:

batch = processor.getCurrentBatch(terminal, merchant)

This method returns a Batch object for the current batch and the given 
processor, terminal, and merchant.

Using LivePayment properties

Each object type has predefined properties associated with it. They are either 
optional or required. You do not need to set an optional property. A required 
property must be set before you can invoke a particular method for the object, 
or before you can use the object as a parameter for a method. You can either 
set properties when you create the object, or set them by direct assignment. For 
example, the example that creates a Merchant object: 

merchant = new Merchant ("00002650999", "Netscape")

sets the merchantNumber and name properties when the object is created. 
You could also set the property directly, for example:

merchant.merchantNumber = "00002650999"



Chapter 8, Using the LivePayment objects   149

Developing with LivePayment

In addition, you can use default property values for some properties. For more 
information, see “Using the default values from the LivePayment configuration” 
on page 149.

Property Types

Though properties of LivePayment objects can have types of number, Boolean, 
etc., properties of LiveWire’s predefined objects (for example, the project 
object) are always strings. You can assign numerical or Boolean values to these 
properties, but they are always converted and stored as strings; to retrieve such 
values, you must convert them back from strings. The parseInt and parse-
Float functions are useful for converting to integer and floating point values. 
For more information, see the LiveWire documentation.

Numeric Strings

If FDC is your acquirer, when using LivePayment object properties that are the 
numeric strings, FDC expects to receive characters in the set "0" to "9" only. 
You cannot include decimal and sign (+, -) characters in a numeric string. For 
example, "-13.54" is not a numeric string that can be used as the value for the 
merchantReference property of the PayEvent object.

Using the default values from the 
LivePayment configuration 

Some values for properties used by the objects are based upon the 
LivePayment configuration. Once set, your application automatically defaults to 
the values in the configuration for the following items:

• Merchant name

• Merchant number

• Terminal number

• Password file for slip encryption



Developing with LivePayment

150   Netscape LivePayment Developer’s Handbook

For example, if you are creating a Terminal object, you usually create it using 
the terminalNumber property. However, if you set the default configuration 
for the terminal number, you can create the Terminal object without the 
terminalNumber property. It will pick up the default value for the terminal 
number from the configuration. 

For example:

terminalObject= new Terminal("terminalNumber")

This object can instead use the default value for terminalNumber:

terminalObject= new Terminal()

For more information on configuring the defaults, see Chapter 2, “Setting up 
Netscape LivePayment”.

Using error status methods

Most methods return a value or an object. For methods that return a Boolean 
value or an object, the return value indicates the success or failure of the 
method invocation: true indicates success and false indicates failure. For 
methods that return an object, a non-null object indicates success, a null value 
indicates failure.

In addition, all objects have the following methods to indicate whether the 
object invocation has been successful so far:

Method Return Value Type Description

good Boolean Checks the status. Returns true if no error 
status has been set for the object. Other-
wise, it returns false.

bad Boolean Checks the status. Returns true if at least 
one error status has been set for the 
objects. Otherwise, it returns false.

getStatusCode String Returns the status code, which is a string 
designating the latest error. If no status 
code has been set for this object, returns 
null.



Chapter 8, Using the LivePayment objects   151

Developing with LivePayment

For example, the following code checks for errors using the above methods:

// get the latest batch 
batch = processor.getCurrentBatch(term, mer);

// check for errors
if (processor.bad())
{

write("get current batch failed");
write("Processor status code = ", processor.getStatusCode());
write("Processor status message = ",processor.getStatusMessage());
processor.clearStatus();

}

The example uses the bad method to test for an error. If bad is true, it writes 
“get current batch failed”, gets the status code with getStatusCode, and gets 
the code’s message with getStatusMessage. After writing the status code and 
status message, the application clears the status code and status message with 
clearStatus.

You can also check for errors by checking the return value. For example:

// get the latest batch 
batch = processor.getCurrentBatch(term, mer);

// check for errors
if (batch == null)
{

write("get current batch failed");
write("Processor status code = ", processor.getStatusCode());
write("Processor status message = ",processor.getStatusMessage());
processor.clearStatus();

}

getStatusMessage String Returns a more detailed message or mes-
sages (multiple messages occur if there are 
multiple errors). It does not include any 
HTML tags. If no status message has been 
set for this object, returns null.

clearStatus Void Clears the status code and messages. Until 
you clear the status code and messages, 
more recent status codes and messages are 
appended to the existing status codes and 
messages (most recent first). 

Method Return Value Type Description



Using LivePayment objects to process payments

152   Netscape LivePayment Developer’s Handbook

A successful getCurrentBatch returns a Batch object. A null value indicates 
that getCurrentBatch was unsuccessful. The program tests for a null value, 
and, if it finds it, writes the message “get current batch failed.” 

Getting the LivePayment version in 
LiveWire

If you need to know exactly which version of LivePayment you are using, you 
can find out using the LivePaymentVersion function. You use this function 
after you have registered the LivePayment objects. The function returns a string 
with the version in it.

For example:

<SERVER>

var livePaymentVersion = LivePaymentVersion();
write(livePaymentVersion);

</SERVER>

Using LivePayment objects to process 
payments

This section describes how to create the objects and use the methods for a 
LivePayment credit card processing application.

Creating Merchant and Terminal objects

The first thing you should do when starting to process credit card transactions 
is create the Merchant and Terminal objects. The merchant is the party doing 
business on the Internet, and the terminal is a device on which card processing 
takes place. Creating these objects requires merchant number and terminal 
number information from the bank card acquirer.



Chapter 8, Using the LivePayment objects   153

Using LivePayment objects to process payments

The Merchant object has the following properties:

The Terminal object has the following property:

To create objects, you use the standard JavaScript operator new. To create a 
new Merchant object, you provide the values for the properties merchant-
Number (which you get from your acquirer) and name (the name of your 
company). 

To create a new Terminal object, you provide the terminalNumber property 
(which you get from your acquirer). 

The following sample code creates a Merchant object “mer”, and a Terminal 
object “term”:

// create a Merchant and Terminal object
mer = new Merchant("00002650999", "Netscape");
term = new Terminal("00003277999");

If you have set up defaults in the LivePayment configuration for the merchant 
name, merchant number, and terminal number, you can also define the objects 
without specifying those values:

mer = new Merchant();
term = new Terminal();

Property Type Required/
Optional

Description

merchantNumber String Required The merchant number, 
which is provided by the 
acquirer.

name String Required The name of the merchant 
company.

Property Type Required/
Optional

Description

terminalNumber String Required The terminal number, which 
is provided by the acquirer. 



Using LivePayment objects to process payments

154   Netscape LivePayment Developer’s Handbook

Creating a Processor object

The Processor object contains information about the acquirer. Processor 
methods communicate with the acquirer through the gateway.

The Processor object has the following properties:

The Processor object has the following methods:

The following sample code creates a Processor object:

// create a Processor object
processor = new Processor("FDC", "encryptPassword.txt");

To create a Processor object, you need to know the name of your acquirer (in 
this case FDC) and the file that contains the password for the slip encryption 
key. You can also use the default in the LivePayment configuration for the 
password file and give only the acquirer name.

// create a Processor object
processor = new Processor("FDC");

Property Type Required/
Optional

Description

encryptPasswordFile String Required The name of the file that 
contains the password for 
the slip encryption.

name String Required The name of the acquirer. 

Method Description

authorize Authorizes a payment.

capture Captures a payment.

credit Credits an amount to a credit card.

getCurrentBatch Gets the current batch number from the acquirer and creates a 
Batch object. 

settleBatch Settles a batch for the processor.



Chapter 8, Using the LivePayment objects   155

Using LivePayment objects to process payments

Creating a Batch object

There are two ways to create an instance of a Batch object. The first is to use 
getCurrentBatch, which returns the current batch from the acquirer. The 
second is to use the new operator. You have to use getCurrentBatch initially, 
because that method returns the batch number. However, if you store the batch 
number, in subsequent cases when you need to create a Batch object you can 
use the stored batch number and create the object using the new operator. 

The Batch object has the following properties:

Property Type Required/
Optional

Description

batchNumber String Required The batch number 
returned by getCurrent-
Batch. This number comes 
from the acquirer. 

creditCount Number Required for 
settleBatch

The total number of credits 
in the batch. 

currency String Required for 
settleBatch

The three-character ISO 
4217 currency code. Some 
common codes:
USD  U.S. dollar
CAD  Canadian dollar
FRF French franc
For the complete list of cur-
rency codes, contact the 
International Standards 
Organization. 

merchantReference String Required for 
settleBatch

Reference information pro-
vided by the merchant for 
tracking purposes. For FDC, 
the merchant reference can-
not be more than ten alpha-
numeric characters.

salesCount Number Required for 
settleBatch

The total number of sales in 
the batch. 



Using LivePayment objects to process payments

156   Netscape LivePayment Developer’s Handbook

To create a Batch object with the new operator, the only property you need to 
set is the batchNumber property. The other properties are required for settling 
the batch.

To find out the current batch from your acquirer, you must first have created 
the Terminal and Merchant objects. Each batch is identified by a batch 
number, which your acquirer supplies in response to getCurrentBatch. 

The following sample code creates a Batch object using getCurrentBatch, 
checks for errors, and stores the batch number:

// get the latest batch 
batch = processor.getCurrentBatch(term, mer);

// check the errors
if (processor.bad())
{

write("get current batch failed");
write("Processor status code = ", processor.getStatusCode());
write("Processor status message = ",processor.getStatusMessage());
processor.clearStatus();

}

// remember the batchNumber or store in a database
batchNumber = batch.batchNumber;

This example shows getting the current batch number with the Processor, 
Terminal and Merchant objects created as “processor”, “term”, and “mer”. It 
checks for errors and sends messages if the batch was not opened successfully. 
If successful, getCurrentBatch returns a Batch object with the batchNumber 
property assigned by the acquirer. 

The following example shows creating a Batch object using new operator. The 
getCurrentBatch method was run previously.

totalSalesAmount String Required for 
settleBatch

The total sales amount of 
all credit card transactions 
in the batch. 

totalCreditAmount String Required for 
settleBatch

The total refund/credit 
amount of all credit card 
transactions in the batch. 
Must be a positive number.

Property Type Required/
Optional

Description



Chapter 8, Using the LivePayment objects   157

Using LivePayment objects to process payments

// Create the Batch object using the
// batch number of the batch which was defined earlier
batch2 = new Batch(batchNumber);

The Batch object created is called “batch2.” 

Creating a Slip object

The Slip object contains the buyer’s credit card information, plus some optional 
information. 

The Slip object has the following properties:

Property Type Required/
Optional

Description

amount String Required The amount of money in the 
smallest unit. Only numeric 
characters are allowed (with-
out a decimal point). The 
unit is based on the cur-
rency. For the U.S. dollar the 
unit is a cent. 

billingStreet String Optional The billing street address of 
the credit card holder. Must 
be less than 40 characters; 
additional characters are 
truncated.

billingZip String Optional The billing zip code of the 
credit card holder. 

cardExpiration String Required The card expiration date 
(yyyymm).

cardNumber String Required The credit card number. 

cardType String Required The credit card type. Valid 
types are Visa, MasterCard, 
AmericanExpress, Discover, 
JCB, DinersClub, and Carte-
Blanche. 



Using LivePayment objects to process payments

158   Netscape LivePayment Developer’s Handbook

Once the slip has been encoded, its properties cannot be updated. Most 
properties cannot be accessed. A few are read-only:

• merchantReference

• purchaseRequestTime

• cardType

currency String Required The three-character ISO 
4217 currency code. Some 
common codes:
USD  U.S. dollar
CAD  Canadian dollar
FRF French franc
For the complete list of cur-
rency codes, contact the 
International Standards 
Organization. 

merchantReference String Optional The merchant reference 
information. For example, 
an invoice number. Must be 
less than or equal to 16 
alphanumeric characters.

purchaseRequestTime string Set automati-
cally by Slip 
object

The time the slip was cre-
ated. This field is set auto-
matically by the Slip object 
and cannot be set manually. 
Read-only.

Property Type Required/
Optional

Description



Chapter 8, Using the LivePayment objects   159

Using LivePayment objects to process payments

The Slip object has the following methods:

The following example shows how to create a Slip object at the merchant site. 
The example is in U.S. dollars:

// Create and generate a slip for max amount of 100.00
cardNumber = "5200000000000007";
cardExpiration = "199612";
currency = "USD";
maxAmount = "10000";
slip = new Slip(cardNumber, cardExpiration, maxAmount, currency);

The required information about the card and the order, including the card 
number, expiration date, amount, and currency, comes from the customer. This 
information is used to define the properties. Then you create a slip using that 
information. You use the new operator to create the Slip object. 

Method Description

appendMerchantOrderDesc Updates the merchant’s description of the order. 
The merchant’s order description must match the 
customer’s order description. The description can 
be appended many times and does not need to be 
appended all at once. However, the sequence of 
the append must be the same as the append of the 
customer order description. You must finish 
appending to the order description before you 
authorize.

appendOrderDesc Updates the customer’s order description. The 
description can be appended many times and 
does not need to be appended all at once. You 
should not use appendOrderDesc after using 
encode.

encode Encodes the data in the Slip object into an 
encrypted DER coded string.

getDER Gets the printable ASCII encoded information 
from the slip DER.

initMerchantOrderDesc Initializes the merchant’s order description with 
the slip amount and currency. Use this method 
before using appendMerchantOrderDesc.



Using LivePayment objects to process payments

160   Netscape LivePayment Developer’s Handbook

Next you can set other fields in the slip. The following example shows setting 
fields for a slip called “slip”:

// set other fields before generating the encrypted slip
slip.cardType   = "MasterCard";
slip.merchantReference = "invoice 2789";
slip.billingStreet = "1234 Easy Street";
slip.billingZip = "94043";

slip.appendOrderDesc("Netscape Navigator Gold 2.0");
slip.appendOrderDesc("satisfaction guaranteed");

The order description and the merchant 
order description

A slip contains two order descriptions, the order description that a customer 
sees and the merchant order description. These must be the same, or the autho-
rization fails. The purpose of the order descriptions is to assure the customer 
and the merchant agree upon what is ordered. 

At the time the customer places orders, the application should display an exact 
description of the order including the amount and currency. Use appendOr-
derDesc to add the customer’s order description to the slip. 

You can put multiple lines of information in the order description, and you can 
append to it a number of times. 

Initialize the merchant’s order description with initMerchantOrderDesc. You 
can add additional information with appendMerchantOrderDesc. 

Encoding and decoding a Slip object

After creating a slip, you encode it for security reasons. Once you encode the 
slip, you cannot set any more properties for it, so it’s important to define all the 
information you need before you encode the slip. After you encode the slip 
many properties are not accessible (card number, etc.) and the properties that 
are accessible (merchantReference, purchaseRequestTime, and cardType) 
are read-only. 



Chapter 8, Using the LivePayment objects   161

Using LivePayment objects to process payments

The encode method puts the slip information in DER (Distinguished Encoding 
Rules) encoded string format. After encoding, you use the getDER method to 
get the encoded string. The example below encodes the slip and extracts it (still 
in DER format). 

// encode the slip and
// extract the slip in DER format
slip.encode(processor);
asciiDER = slip.getDER();

You can then take the encoded string and recreate the slip from it. However, 
the properties will either be inaccessible or read-only. Inaccessible properties 
return null when you try to access them. The following example recreates the 
slip from the DER and calls it “slip2.” When the slip is recreated, you are able to 
access read-only properties.

// recreate the slip from the ascii DER
slip2 = new Slip(asciiDER);

You can access some slip information; however, some information is not acces-
sible for security reasons. The following example demonstrates attempts to 
access inaccessible slip data:

// some data in the slip is not accessible
write(slip2.cardNumber == null); // should print true
slip2.cardNumber = "23456"; // should get an error
slip2.getStatusCode(); //prints the error status code
slip2.getStatusMessage(); //and message
slip2.clearStatus()

You cannot read the card number, so the first statement returns null and prints 
true. The second line, which attempts to update the card number, returns an 
error.

Even though all other slip data cannot be updated, you can still enter a 
merchant order description. The merchant order description is stored separately 
from the slip. However, you must finish appending to the order description 
before you authorize a payment.



Using LivePayment objects to process payments

162   Netscape LivePayment Developer’s Handbook

This example shows the order description being initialized with the amount 
and currency from the slip. You must use the slip’s amount and currency. After 
initializing the description, this example appends some descriptive lines. The 
lines you add much match the order description entered when the slip was 
created.

// To provide the order description from the merchant
slip2.initMerchantOrderDesc("10000", "USD");
slip2.appendMerchantOrderDesc("Netscape Navigator Gold 2.0");
slip2.appendMerchantOrderDesc("satisfaction guaranteed");

Creating a PayEvent object

PayEvent objects contain the record of a complete financial transaction. For 
example, a PayEvent object can consist of a credit card authorization and 
capture, or a PayEvent object can be a credit. 

The PayEvent object has the following properties:

Property Type Required/
Optional

Description

amount String Required for 
authorize, 
capture, 
and credit

The amount of money in the 
smallest unit. The amount 
must be greater than zero. 
Only numeric characters 
are allowed (without a deci-
mal point). The unit is based 
on the currency. For the U.S. 
dollar the unit is a cent. 

authCode String Required for 
capture 

The authorization code, 
which is provided by the 
acquirer when the authori-
zation is approved.



Chapter 8, Using the LivePayment objects   163

Using LivePayment objects to process payments

avsResp String Required for 
capture

The address verification sys-
tem response, which is pro-
vided by the acquirer when 
the authorization is 
approved. For example, if 
your acquirer is FDC, the 
system response is three-
characters, where the first 
character represents the 
address match, the second 
character is the zip code 
match, and the third charac-
ter is the authorizer verifica-
tion result code. “Y” is a 
match, “N” is no match, and 
“X” is unavailable or incom-
plete service. 

eventID String Required for 
capture and 
credit

The unique ID for a transac-
tion within the batch. Used 
in capturing and crediting. 
The event ID is set by the 
merchant. The ID must be 
unique for the event; other-
wise you will get an error. 
For FDC, the ID cannot be 
more than five alphanu-
meric characters.

eventTime String Set automati-
cally after 
authorize, 
capture, and 
credit

The time the pay event 
occurred. Provided by the 
acquirer when the capture 
or credit is approved. Read-
only. 

Property Type Required/
Optional

Description



Using LivePayment objects to process payments

164   Netscape LivePayment Developer’s Handbook

For each PayEvent object, you need to define the merchant reference. The 
other PayEvent properties are set later when the object is passed to methods of 
the Processor object. 

You create a PayEvent object using the new operator.

The following example creates a PayEvent object “pay”:

// create a PayEvent object
MerchantReference = "0091";
pay = new PayEvent(MerchantReference);

Or you can assign the merchant reference value when you create the PayEvent 
object:

pay = new PayEvent("0091");

Authorizing a payment

If the pay event consists of an authorization and a capture, you first authorize 
the payment. To do that, you need to define the amount you want to authorize 
and the eventID property. In addition, you need the Processor, Terminal, 
Merchant, PayEvent, and Slip objects that you have previously created. This 

merchantReference String Required Reference information the 
merchant assigns to the pay 
event. For example, the ref-
erence information might be 
the invoice number. For 
FDC, this reference cannot 
be more than ten numeric 
characters.

paySvcData String Required for 
capture

The payment service data or 
interchange compliant 
code, which is provided by 
the acquirer when the 
authorization is approved. 
Payment service data is only 
used for Visa and Master-
Card.

Property Type Required/
Optional

Description



Chapter 8, Using the LivePayment objects   165

Using LivePayment objects to process payments

example authorizes a purchase of $100.00 in U.S. dollars. It uses the previously 
created Processor, Terminal, Merchant, PayEvent, and Slip objects 
“processor”, “terminal”, “mer”, “pay”, and “slip”.

// To authorize for an amount of 100.00
pay.amount = "10000";
if (processor.authorize(terminal, mer, pay, slip))
{

write(pay.authCode);
write(pay.svcData);
write(pay.avsResp);
write(pay.eventTime);

}
else
{

write("authorize failed");
write("Processor status code = ", processor.getStatusCode());
write("Processor status message = ",processor.getStatusMessage());
processor.clearStatus();

}

If the acquirer approves the authorization, the application returns the authori-
zation code, the payment service data, the AVS response, and the time of the 
payment event. This example writes that information.

If the acquirer does not approve the authorization, or if some other error 
occurs, the example gives the user an error message, the status code, and the 
status message.

Capturing a payment

Once you have received verification of the authorization from your acquirer, 
you capture the amount of the sale. To capture a payment, use the capture 
method of the Processor object. You use the previously created PayEvent, 
Batch, Terminal, Merchant, and Slip objects. This example captures $98.50 
in U.S. dollars. The eventID property is a unique number for the transaction in 
the batch.

// To capture an amount of 98.50
// authCode, svcData, and avsResp should be properly set in the PayEvent
// object (these values are returned by authorize)
pay.amount = "9850";
pay.eventID = "0001";
if (!processor.capture(terminal, mer, pay, slip, batch2))
{

write("capture failed");



Using LivePayment objects to process payments

166   Netscape LivePayment Developer’s Handbook

write("Processor status code = ", processor.getStatusCode());
write("Processor status message = ",processor.getStatusMessage());
processor.clearStatus();

}
else
{

write("capture succeeded");
write(pay.eventTime);

}

If the capture succeeds, the application returns the time of the capture. If the 
capture fails, the application gives an error message, status code, and status 
message.

Crediting an account

To credit an account for a previously captured purchase, you need to know the 
payment data from the capture. You need to set an amount for the credit and a 
unique event ID. The following example sets these values and invokes the 
credit method:

// To credit an amount of 12.38
pay.amount = "1238";
pay.eventID = "0002";
processor.credit(terminal, mer, pay, slip, batch);

The event ID is a unique number for the transaction in the batch. In this 
example, “pay”, “processor”, “terminal”, “mer”, “pay” “slip” and “batch” are the 
previously created objects. 

Settling payments

To settle payments, you settle the batch and check the total number of sales 
and credits and their total amounts against your records. The following 
example settles the batch and checks for errors.

// settle the batch
batch.merchantReference = "234234";
batch.totalSalesAmount = "340009";
batch.totalCreditAmount = "1238";
batch.salesCount = 37;
batch.creditCount = 1;
if (!processor.settleBatch(term, mer, batch))



Chapter 8, Using the LivePayment objects   167

Using the LPAuthOnly sample application

{
write("settle batch failed");
write("Processor status code = ", processor.getStatusCode());
write("Processor status message = ",processor.getStatusMessage());
processor.clearStatus();

}

If the batch cannot be settled successfully, the application gives an error 
message, the status code, and the status message.

Using the LPAuthOnly sample application
The LPAuthOnly sample application performs a simple function: it authorizes 
the purchase of a single item (a T-shirt) and writes the results to a logfile (/tmp/
lpAuthOnly.log). There is no database involved, and it does not demonstrate 
the complete payment process. Instead, it provides a simple example of how to 
use Netscape LivePayment.

If you want to alter an existing application, we recommend that you begin with 
the Starter Application Set (LPStart and LPAdmin) that has database integration 
and the full range of LivePayment functions. 

The LPAuthOnly files

The following files make up LPAuthOnly:

• auth.html—The file containing the JavaScript that authorizes a payment.

• build—The file that builds the .web file.

• error.html—An HTML page that displays error messages.

• home.html—The first page that the user sees to buy a T-shirt.

• purchase.html—The form for purchasing the T-shirt.

• start.html—The initial page where registerLivePayment is registered.



Using the LPAuthOnly sample application

168   Netscape LivePayment Developer’s Handbook

In addition, LPAuthOnly includes the following images:

• tshirt.gif—The picture of the T-shirt.

• livepayment.gif—The picture of the LivePayment banner.

Running LPAuthOnly

The LPAuthOnly sample application is shipped with LivePayment and automat-
ically installed when you install LivePayment. To use LPAuthOnly, from the 
Netscape LivePayment page, click the LiveWire Application Manager link. A 
list of applications appears. Click LPAuthOnly to display information about the 
application. 

To run the application, with LPAuthOnly highlighted in the scrolling list, click 
run from the list of actions. A welcome page appears. 



Chapter 8, Using the LivePayment objects   169

Using the LPAuthOnly sample application

To purchase the T-shirt, click the Purchase link. The purchase.html page 
appears:

To try out the application, enter the information required and click Place 
Order. If successful, the application displays a receipt. If there is an error, the 
application displays the error on the error page (error.html). 

As you can see, with LPAuthOnly you can only buy one item (the T-shirt) at 
one price ($14.95), and you can only buy one at a time. These assumptions are 
listed (among others) at the beginning of the auth.html file.



Using the LPAuthOnly sample application

170   Netscape LivePayment Developer’s Handbook

The sample code

The bulk of the sample code for credit card processing is in auth.html. The 
other files are either HTML pages for the user to see (home.html, error.html) or 
files that perform functions unrelated to card processing (build, start.html). 

The file auth.html defines several functions and follows the basic LivePayment 
steps for authorization:

1. Register the LivePayment objects for the page.

The application uses registerLivePayment to register the LivePayment 
objects for the page.

2. Create a Merchant object.

The application creates a Merchant object using the default values 
supplied in the configuration. The configuration defaults are listed in the 
assumptions section of the application.

3. Create a Terminal object.

The application creates a Terminal object using the default values supplied 
in the configuration. The configuration defaults are listed in the assump-
tions section of the application.

4. Create a Processor object.

The application creates a Processor object using the default password file 
supplied in the configuration and “FDC” as the processor name. The config-
uration defaults are listed in the assumptions section of the application.

5. Generate a Slip object.

The application uses the function GetCurrentSlip to generate the Slip 
object. This function creates and encodes the Slip object.

6. Create a PayEvent object.

The application creates a PayEvent object first by calling a function 
GetMerchantReference and then by using the new operator to create the 
object.

7. Authorize the transaction.

The application uses the authorize method of the Processor object to 
authorize the payment. 



Chapter 8, Using the LivePayment objects   171

Using the LPAuthOnly sample application

8. Check the AVS.

The application uses the function CheckAVS to check the AVS result 
returned by the authorization. If both characters (address and zip) match, 
then the application accepts the authorization.

9. Log transactions to a file.

To log the transactions to the lpAuthOnly.log file, the application uses the 
Log function. It creates a new file in a temporary directory and writes the 
transaction information to it. It checks whether the authorization succeeded 
or failed. 

10. Print the receipt or the error message.

If the authorization is successful, the application uses PrintReceipt to print 
the receipt. If the authorization fails, the application uses PrintError or 
PrintFmtError.



Using the LPAuthOnly sample application

172   Netscape LivePayment Developer’s Handbook



Chapter 9, LivePayment object reference   173

C h a p t e r

9

 

LivePayment object reference

 

his chapter contains reference information for LivePayment’s objects, 
properties, methods, and functions.

 

amount (PayEvent object)

 

Property. The amount of money in the smallest unit. 

 

Syntax

 

payEventObjectName

 

.amount

 

Property of

 

PayEvent

 

Description

 

The amount must be greater than zero. Only numeric characters are allowed 
(without a decimal point). The unit is based on the currency. For the U.S. 
dollar the unit is a cent.

The type is string.

The property is required for 

 

authorize

 

, 

 

capture

 

, and 

 

credit

 

.

 

Examples

 

The following example shows the slip amount set to $14.95 in US dollars when 
the slip is generated. Later the same amount is used to set the amount property 
for the 

 

PayEvent

 

 object.

 

//
// Create a payevent object
//

T



174   Netscape LivePayment Developer’s Handbook

var merchantReference = GetMerchantReference();
payevent              = new PayEvent(merchantReference);
payevent.amount       = "1495";

amount (Slip object)

Property. The amount of money in the smallest unit.

Syntax slipObjectName.amount

Property of Slip

Description Only numeric characters are allowed (without a decimal point). The unit is 
based on the currency. For the U.S. dollar the unit is a cent. 

The type is string.

The property is required.

Examples See the example for amount (PayEvent object).

appendMerchantOrderDesc

Method. Appends information to the merchant’s description of the order. 

Syntax slipObjectName.appendMerchantOrderDesc("description_information")

Parameters slipObjectName is the previously created slip. 

description_information represents the order description information the 
merchant enters.

Method of Slip

Description Before using this method, you need to use initMerchantOrderDesc. The goal 
of initMerchantOrderDesc and appendMerchantOrderDesc is for 
merchants to provide their version of the order description. The important 
things to remember about appendMerchantOrderDesc are:

• The merchant order description must match the customer order description, 
which is entered with the appendOrderDesc method of the Slip object. 
The authorize method verifies that the two match.



Chapter 9, LivePayment object reference   175

• You can append to the merchant order description multiple times, as long 
as you append the same information as in the customer order description in 
the same sequence. For example, you might add the customer order 
description all at once, but for the merchant order description you might 
break the information up and append multiple times. 

• You must finish appending to the order description before you authorize. 

• If the description contains new line characters, those need to be included 
explicitly.

Returns true if successful, false if unsuccessful.

Examples The following example shows two lines updating the merchant order 
description:

slip.appendMerchantOrderDesc("Netscape Navigator Gold 2.0");
slip.appendMerchantOrderDesc("satisfaction guaranteed");

These two lines are added to the description for the slip “slip”.

If you want to include a new line character, you must specify it as follows:

slip.appendMerchantOrderDesc("line\n");

See also initMerchantOrderDesc, appendOrderDesc methods

appendOrderDesc

Method. Appends lines to the customer’s order description. 

Syntax slipObjectName.appendOrderDesc("description_information");

Parameters slipObjectName is the previously created Slip object.

description_information represents the order information the customer enters.

Method of Slip

Description You can append to the description many times (before using encode), and you 
do not need to do all appends at the same time. If the description contains new 
line characters, those need to be included explicitly. You should not use 
appendOrderDesc after using encode.

Returns true if the append was successful, false if the append was unsuccessful.



176   Netscape LivePayment Developer’s Handbook

Examples This example shows two lines of description added to the customer’s order 
description.

slip.appendOrderDesc("Netscape Navigator Gold 2.0");
slip.appendOrderDesc("satisfaction guaranteed");

If you want to include a new line character, you must specify it as follows:

slip.appendOrderDesc("line\n");

See also appendMerchantOrderDesc method

authCode

Property. The authorization code, which is provided by the acquirer when the 
authorization is approved. 

Syntax payEventObjectName.authCode

Property of PayEvent

Description The authCode type is string.

The property is required for capture.

Examples The following example shows the construction of a PayEvent object, which 
includes setting the authCode.

//
// construct PayEvent object
// note, purchaseCursor is a database cursor that has 
// opened and located the to be authorized purchase record.
// terminal, merchant, payevent, slip, batch are objects
// which get created previously.
// The authCode along with other data from previous authorize()
// is picked up from the database and gets set in the PayEvent
// object before the capture.
//
 
merchantReference = slip.merchantReference;
 
payevent = new PayEvent(merchantReference);
payevent.amount = purchaseCursor.amount;
payevent.authCode = purchaseCursor.authCode;
payevent.paySvcData = purchaseCursor.paySvcData;
payevent.avsResp = purchaseCursor.avsResp;
eventID = GetNextEventID();
payevent.eventID = eventID;
 



Chapter 9, LivePayment object reference   177

//
// capture the payment
//
if (processor.capture(terminal, merchant, payevent, slip, batch))

{
purchaseCursor.eventID = eventID;
purchaseCursor.status = "CAPTURED";
if ((error = purchaseCursor.updateRow("crPurchase")))
{

purchaseCursor.close();
database.rollbackTransaction();
write("Failed to update crPurchase in database, error ",

                          error);
}

}

authorize

Method. Authorizes a payment.

Syntax processorObjectName.authorize(terminalObjectName, merchantObjectName, 
payEventObjectName, slipObjectName)

Parameters processorObjectName is the previously created Processor object. 

terminalObjectName, merchantObjectName, payEventObjectName, and slipOb-
jectName are the previously created objects.

Method of Processor

Description Before authorizing a payment, you need to set the amount property of the 
PayEvent object. The authorization also checks the merchant’s order 
description against the customer’s order description to be sure they match. 

If successful, returns true. The authCode, paySvcData, avsResp and 
eventTime in the PayEvent object are also set. If unsuccessful, returns false. If 
you are using loopback mode, the AVS that is returned is a random response so 
that if you check the AVS, you can test with a variety of responses.

Examples The following example shows the authorize method:

processor.authorize(terminal, mer, pay, slip);

Where “processor”, “terminal”, “mer”, “pay”, and “slip” are the previously 
created objects.



178   Netscape LivePayment Developer’s Handbook

avsResp

Property. The address verification system result, which is provided by the 
acquirer when the authorization is approved. 

Syntax payEventObjectName.avsResp

Property of PayEvent

Description If your acquirer is FDC, the system response is three characters, where the first 
character represents the address match, the second character is the zip code 
match, and the third character is the authorizer verification result code. “Y” is a 
match, “N” is no match, and “X” is unavailable or incomplete service. 

Note that the acquirer still authorizes a payment even if the AVS does not 
match. It is up to the merchant to decide whether or not to continue with the 
transaction.

The type is string.

Required for capture.

Examples The following function checks the AVS response:

function CheckAVS(payevent)
{

var avsfail = 0;

avs = payevent.avsResp;
if (avs.substring(0, 1) != "Y")
{

 avsfail = 1;
}

if (avs.substring(1, 2) != "Y")
{

avsfail = 2;
}
return (avsfail);

}

bad 

Method. Checks the error status to determine if object has been successfully 
created.

Syntax ObjectName.bad()



Chapter 9, LivePayment object reference   179

Parameters ObjectName is the object for which you are checking errors.

Method of All LivePayment objects.

Description Checks the status. Returns true if at least one error status has been set for the 
objects. Otherwise, it returns false.

Examples The following example checks to see if getCurrentBatch is successful:

// get the latest batch 
batch = processor.getCurrentBatch(term, mer);

// check for errors
if (processor.bad())
{

write("get current batch failed");
write("Processor status code = ", processor.getStatusCode());
write("Processor status message = ",processor.getStatusMessage());
processor.clearStatus();

}

See also good, getStatusCode, getStatusMessage, and clearStatus methods.

Batch

Object. Groups all credit card transactions that take place through a specific 
terminal until the batch is settled. 

Syntax batchObjectName = new Batch("batchNumber")

Parameters batchObjectName is the Batch object you are creating. 

batchNumber is the batch number returned by the previous getCurrentBatch. 
You can also create a Batch object by running getCurrentBatch. However, 
since getCurrentBatch always has to communicate across the Internet with the 
acquirer and return the number, it is more efficient to track the batch number 
and use it when you need to create a Batch object.

Description The Batch object groups all credit card transactions that take place through a 
specific terminal until the batch is settled. If your acquirer is FDC, there is 
always a current batch ready to receive your credit card transactions. When you 
settle one batch, FDC assigns a new current batch. You need to track the total 
sales amount and count and the total credit amount and count for the current 
batch. When you settle the batch, your totals for the credit card transactions are 
compared with the acquirer’s. If they agree, the batch is settled.



180   Netscape LivePayment Developer’s Handbook

Properties • batchNumber

• creditCount

• currency (Batch object)

• merchantReference (Batch object)

• salesCount

• totalSalesAmount

• totalCreditAmount

Methods • None

Examples The following example creates a Batch object called “batch2”:

batch2 = new Batch("00157");

See also getCurrentBatch method

batchNumber

Property. The batch number returned by getCurrentBatch. 

Syntax batchObjectName.batchNumber

Property of Batch

Description This number comes from the acquirer when you run getCurrentBatch. If the 
current batch number is stored by the application, this property can also be 
assigned when a Batch object is created using the new operator.

The type is string.

The property is required.

Examples The following example creates a Batch object called “batch2” using a batch 
number “00157”:

batch2 = new Batch("00157");

The batch number in this example was previously returned by getCurrent-
Batch.

See also Batch object, and getCurrentBatch method 



Chapter 9, LivePayment object reference   181

billingStreet

Property. The billing street address of the credit card holder. 

Syntax slipObjectName.billingStreet

Property of Slip

Description The billing street address must be less than 40 characters. Additional characters 
are truncated.

The type is string.

The property is optional.

Examples slip.billingStreet = "1234 Easy Street";

See also billingZip 

billingZip

Property. The billing zip code of the credit card holder.

Syntax slipObjectName.billingZip

Property of Slip

Description The billingZip property type is string.

The property is optional.

Examples slip.billingZip = "94043";

See also billingStreet 

capture 

Method. Captures a payment.

Syntax processorObjectName.capture(terminalObjectName, merchantObjectName, 
payEventObjectName, slipObjectName, batchObjectName)

Parameters processorObjectName is the previously created object.

terminalObjectName, merchantObjectName, payEventObjectName, slipOb-
jectName, and batchObjectName are the previously created objects.



182   Netscape LivePayment Developer’s Handbook

Method of Processor

Description Before capturing, you need to set the amount and eventID properties of the 
PayEvent object. The eventID must be unique within the batch. The 
authCode, svcData, and avsResp properties of the PayEvent object (which 
are returned from a successful authorize) should also be set. 

If successful, returns true and the eventTime property in the PayEvent object 
is set. If unsuccessful, returns false.

Examples The following example shows the capture method:

processor.capture(terminal, mer, pay, slip, batch);

In this example “processor”, “batch”, “terminal”, “mer”, “pay”, and “slip” are the 
previously created objects.

cardExpiration

Property. The credit card expiration date. 

Syntax slipObjectName.cardExpiration

Property of Slip

Description The credit card expiration date is in the form yyyymm.

The type is string.

The property is required.

Examples The following example shows the creation of a new Slip object. The credit card 
expiration date is “199612”.

slip = new Slip("5200000000000007", "199612", "10000", "USD");

cardNumber

Property. The credit card number.

Syntax slipObjectName.cardNumber

Property of Slip



Chapter 9, LivePayment object reference   183

Description The cardNumber type is string.

The property is required.

Examples The following example shows the creation of a new Slip. The credit card 
number is “5200000000000007”.

slip = new Slip("5200000000000007", "199612", "10000", "USD");

cardType

Property. The credit card type.

Syntax slipObjectName.cardType

Property of Slip

Description Valid types are Visa, MasterCard, AmericanExpress, Discover, JCB, DinersClub, 
and CarteBlanche.

The type is string.

The property is required.

Examples slip.cardType = "MasterCard";

clearStatus

Method. Clears the status code and messages.

Syntax ObjectName.clearStatus()

Parameters ObjectName is the object for which you are checking errors.

Method of All LivePayment objects.

Description Until you clear the status code and messages, more recent status codes and 
messages are appended to the existing status codes and messages (most recent 
first). All status codes and messages are cleared when you use clearStatus.

Examples The following example checks to see if getCurrentBatch is successful:

// get the latest batch 
batch = processor.getCurrentBatch(term, mer);

// check for errors
if (processor.bad())



184   Netscape LivePayment Developer’s Handbook

{
write("get current batch failed");
write("Processor status code = ", processor.getStatusCode());
write("Processor status message = ",processor.getStatusMessage());
processor.clearStatus();

}

See also good, bad, getStatusCode, and getStatusMessage methods.

credit

Method. Issues credit.

Syntax processorObjectName.credit(terminalObjectName, merchantObjectName, 
payEventObjectName, slipObjectName, batchObjectName)

Parameters processorObjectName is the previously created object.

terminalObjectName, merchantObjectName, payEventObjectName, slipOb-
jectName, and batchObjectName are the previously created objects.

Method of Processor

Description Before using credit, you need to set the amount and eventID properties of 
the PayEvent object. The eventID must be unique within the batch.

If successful, returns true and the eventTime property in the PayEvent object 
is set. If unsuccessful, returns false.

Examples The following example shows the credit method:

processor.credit(terminal, mer, pay, slip, batch);

In this example “processor”, “terminal”, “mer”, “pay”, “slip”, and “batch” are the 
previously created objects.

creditCount

Property. The total number of credits in the batch.

Syntax batchObjectName.creditCount

Property of Batch

Description The creditCount property’s type is number.

The property is required for settleBatch.



Chapter 9, LivePayment object reference   185

Examples The following example sets the creditCount for a batch called “batch.”

batch.creditCount = 3;

See also totalCreditAmount

currency (Batch object)

Property. The three-character ISO 4217 currency code. 

Syntax batchObjectName.currency

Property of Batch

Description Some common currency codes are:
USD U.S. dollar
CAD Canadian dollar
FRF French franc

For the complete list of currency codes, contact the International Organization 
for Standardization. 

The type is string.

The property is required for settleBatch.

Examples batch.currency = "USD";

currency (Slip object)

Property. The three-character ISO 4217 currency code. 

Syntax slipObjectName.currency

Property of Slip

Description Some common currency codes are:
USD U.S. dollar
CAD Canadian dollar
FRF French franc

For the complete list of currency codes, contact the International Organization 
for Standardization. 



186   Netscape LivePayment Developer’s Handbook

The type is string.

The property is required.

Examples The following example sets the currency property of the Slip object by 
defining the currency and using it to create the Slip object.

// generate a slip
//
amount = "1495";
currency = "USD";
CCNumber = "5200000000000007";
CCExpDate = "199612"

slip = new Slip(CCNumber, CCExpDate,amount,currency);

write(slip.currency);

encode

Method. Encodes the data in the Slip object into an encrypted, DER-encoded 
string. 

Syntax slipObjectName.encode(processorObjectName)

Parameters slipObjectName is the previously created Slip object.

processorObjectName is the previously created Processor object.

Method of Slip

Description Once the slip is encoded, many of the properties are not accessible. Others are 
read-only. The method getDER is the only method you can use on the data 
stored in the encoded slip, though you can still append to the merchant order 
description (which is stored separately from the slip).

Returns true if successful, false if unsuccessful.

Examples The following example shows encoding a previously created slip:

slip.encode(processor);

The previously created Slip object is “slip” and the Processor object is 
“processor”.

See also getDER method



Chapter 9, LivePayment object reference   187

encryptPasswordFile

Property. The name of the file that contains the password for the slip 
encryption and decryption. 

Syntax processorObjectName.encryptPasswordFile

Property of Processor

Description You can set the encryptPasswordFile property in you application, or use the 
default value you set for this property in the LivePayment parameter configu-
ration. For more information on configuring the parameters, see “Configuring 
the LivePayment parameters” on page 32.

The type is string.

The property is required.

Examples The following example shows the creation of a new Processor object called 
“processor”. The processor name is “FDC”, and the encryptPasswordFile is 
“encryptPassword.txt”:

processor = new Processor("FDC", "encryptPassword.txt");

eventID

Property. The unique ID within the batch.

Syntax payEventObjectName.eventID

Property of PayEvent

Description The event ID is used in capturing and crediting. The ID must be unique for the 
event, otherwise you will get an error. For FDC, the ID cannot be more than 
five alphanumeric characters.

The type is string.

The property is required for capture and credit.

Examples The following function gets the next event ID by incrementing the current 
event ID by 1. 

function GetNextEventID()
{

project.lock();
project.eventID = parseInt(project.eventID) + 1;



188   Netscape LivePayment Developer’s Handbook

var nextID = parseInt(project.eventID);
project.unlock();
return nextID;

}
payevent.eventID = GetNextEventID();

The resulting eventID is used by the PayEvent object.

eventTime

Property. The time the pay event occurred.

Syntax payEventObjectName.eventTime

Property of PayEvent

Description The time the pay event occurred. Provided by the acquirer when the authorize, 
capture, or credit is approved. Read-only.

The type is string.

The property is set automatically after authorize, capture, and credit

Examples The following line of code display the eventTime after a successful capture. 

//
// capture a payment
//
if (processor.capture(terminal, merchant, payevent, slip, batch))
{

write("A successful capture at ", payevent.eventTime);
}

getCurrentBatch 

Method. Gets the current batch number from the acquirer and creates a Batch 
object. 

Syntax batchObjectName = processorObjectName.getCurrentBatch 
(terminalObjectName, merchantObjectName)

Parameters batchObjectName is the created Batch object.

processorObjectName, terminalObjectName, and merchantObjectName are the 
objects that have been created previously.



Chapter 9, LivePayment object reference   189

Method of Processor

Description You can use this method multiple times for the same current batch. It returns 
the batch object with the same batch number until the batch is settled, when it 
returns a current batch object. After using getCurrentBatch you can store the 
batch number and use the stored number to recreate the batch object when 
you need to.

If successful, this method returns a Batch object with the batchNumber 
property assigned by the processor. If unsuccessful, it returns null.

Examples The following example creates a batch object “batch” using a Terminal object 
“term” and a Merchant object “mer”:

batch = processor.getCurrentBatch(term, mer);

See also Batch object, batchNumber property

getDER 

Method. Gets the encoded information from the slip stored in DER (distin-
guished encoding rules) format. 

Syntax asciiDER = slipObjectName.getDER()

Parameters asciiDER is the DER-encoded slip.

slipObjectName is the Slip object.

Method of Slip

Description This method gets the encoded information from the slip DER. This method only 
gets the information that is accessible after the slip has been encoded.

Returns the string of the slip DER if successful.

Examples The following example shows getDER used on an encoded slip.

asciiDER = slip.getDER()

In this example, “asciiDer” is the DER-encoded slip and “slip” is the Slip object.

See also encode method.



190   Netscape LivePayment Developer’s Handbook

getStatusCode

Method. Gets the status code of the most recent error.

Syntax ObjectName.getStatusCode()

Parameters ObjectName is the object for which you are checking errors.

Method of All LivePayment objects.

Description Returns the status code, which is a string designating the latest error. If no 
status code has been set for this object, returns null.

Examples The following example checks to see if getCurrentBatch is successful:

// get the latest batch 
batch = processor.getCurrentBatch(term, mer);

// check for errors
if (processor.bad())
{

write("get current batch failed");
write("Processor status code = ", processor.getStatusCode());
write("Processor status message = ",processor.getStatusMessage());
processor.clearStatus();

}

See also good, bad, getStatusMessage, and clearStatus methods.

getStatusMessage

Method. Returns a detailed status message or messages.

Syntax ObjectName.getStatusMessage)

Parameters ObjectName is the object for which you are checking errors.

Method of All LivePayment objects.

Description Returns a detailed status message or messages (multiple messages occur if there 
are multiple errors). It does not include any HTML tags. If no status message 
has been set for this object, returns null.

Examples The following example checks to see if getCurrentBatch is successful:

// get the latest batch 
batch = processor.getCurrentBatch(term, mer);



Chapter 9, LivePayment object reference   191

// check for errors
if (processor.bad())
{

write("get current batch failed");
write("Processor status code = ", processor.getStatusCode());
write("Processor status message = ",processor.getStatusMessage());
processor.clearStatus();

}

See also good, bad, getStatusCode, and clearStatus methods.

good 

Method. Checks the error status to determine if object has been successfully 
created.

Syntax ObjectName.good()

Parameters ObjectName is the object for which you are checking errors.

Method of All LivePayment objects.

Description Checks the status. Returns true if no error status has been set for the object. 
Otherwise, it returns false.

Examples The following example checks to see if getCurrentBatch is successful:

// get the latest batch 
batch = processor.getCurrentBatch(term, mer);

// check for errors
if (processor.good())
{

write("current batch number is", batch.batchNumber);
}

See also bad, getStatusCode, getStatusMessage, and clearStatus methods.

initMerchantOrderDesc 

Method. Initializes the merchant’s order description.

Syntax slipObjectName.initMerchantOrderDesc("amount", "currency");

Parameters slipObjectName is the Slip object. 

amount and currency are the values on the slip.



192   Netscape LivePayment Developer’s Handbook

Method of Slip

Description Initializes the merchant’s order description. The amount and the currency in the 
description should be identical to the ones on the slip. Also, the merchant order 
description must match the customer order description.

Returns true if successful, false if unsuccessful.

Examples In the following example, “slip2” is the Slip object:

slip2.initMerchantOrderDesc("10000", "USD");

See also appendMerchantOrderDesc and appendOrderDesc methods

livePaymentVersion

Function. Gets the current version of LivePayment.

Syntax livePaymentVersion()

Parameters None.

Description Use this function to find out the version of LivePayment you are using. 

Examples The following example shows finding the version and writing it:

var livePaymentVersion = LivePaymentVersion();
write(livePaymentVersion);

Merchant 

Object. Represents a merchant doing commerce on the Internet. 

Syntax You can create a Merchant object using two different syntax options. The first 
requires strings for the merchantNumber and name properties. The second 
requires no parameters, because it picks up the default merchant number and 
name from the configuration. This example shows the first syntax, with strings 
for the configuration information:

merchantObjectName = new Merchant("merchantNumber", "name")

This example shows the second syntax, which uses the default configuration 
information:

merchantObjectName = new Merchant()



Chapter 9, LivePayment object reference   193

Parameters merchantObjectName is the new Merchant object.

merchantNumber is the merchant number, which is provided by the acquirer. 
name is the name of the merchant company.

Description The Merchant object represents a merchant doing commerce on the Internet. 
The merchant establishes a relationship with an acquirer to perform credit card 
transactions through the acquirer. The merchant is identified by a merchant 
number, which comes from the acquirer.

Properties • merchantNumber

• name (Merchant object)

Methods • None

Examples The following examples show the two syntax options, depending upon 
whether you use the default configurations or not.

This example shows the creation of a new merchant “mer” with a merchant 
number of “00002650999” and a name of “Netscape”:

mer = new Merchant("00002650999", "Netscape");

This example picks up the default configuration information:

mer = new Merchant();

merchantNumber

Property. The merchant number provided by the acquirer.

Syntax merchantObjectName.merchantNumber

Property of Merchant

Description You can set this property in you application, or use the default value you set 
for this property in the LivePayment parameter configuration. For more infor-
mation on configuring the parameters, see “Configuring the LivePayment 
parameters” on page 32.

The type is string.

The property is required.

Examples The following examples show setting the merchantNumber property in the 
process of creating a new Merchant object.



194   Netscape LivePayment Developer’s Handbook

The first example shows the creation of a new merchant “mer” with a merchant 
number of “00002650999” and a name of “Netscape”.

mer = new Merchant("00002650999", "Netscape");

The next example picks up the default configuration information.

mer = new Merchant();

merchantReference (Batch object)

Property. Batch reference information provided by the merchant

Syntax batchObjectName.merchantReference

Property of Batch

Description If your acquirer is FDC, the merchant reference cannot be more than ten alpha-
numeric characters.

The type is string. 

The property is required for settleBatch.

Examples The following example shows the merchant reference “1234” defined for a 
Batch object “batch.”

batch.merchantReference = 1234; 

merchantReference (PayEvent object)

Property. PayEvent reference information provided by the merchant.

Syntax payEventObjectName.merchantReference

Property of PayEvent

Description Reference information the merchant assigns to the pay event. For example, the 
reference information might be the invoice number. For FDC, this reference 
cannot be more than ten numeric characters.

The type is string.

The property is required.



Chapter 9, LivePayment object reference   195

Examples The following example creates a PayEvent object called “pay” using a 
merchantReference value of “2001”:

pay = new PayEvent("2001");

merchantReference (Slip object)

Property. Slip reference information provided by the merchant.

Syntax slipObjectName.merchantReference

Property of Slip

Description The merchantReference property must be less than 16 alphanumeric 
characters.

The type is string.

The property is optional.

Examples slip.merchantReference = "invoice 2789";

name (Merchant object)

Property. The name of the merchant’s company.

Syntax merchantObjectName.name

Property of Merchant

Description You can set the name property in your application or use the default value you 
set for this property in the LivePayment parameter configuration. For more 
information on configuring the parameters, see “Configuring the LivePayment 
parameters” on page 32.

The type is string.

The property is required.

Examples This example shows the creation of a new merchant “mer” with a merchant 
number “00002650999” and name “Netscape”:

mer = new Merchant("00002650999", "Netscape");



196   Netscape LivePayment Developer’s Handbook

name (Processor object)

Property. The name of the acquirer.

Syntax processorObjectName.name

Property of Processor

Description The name of the acquirer.

The type is string.

The property is required.

Examples The following example creates a Processor object called “processor” and sets 
the name property to “FDC”. It uses the default password file:

processor = new Processor("FDC");

PayEvent

Object. A particular event in a financial transaction. 

Syntax payEventObjectName = new PayEvent("merchantReference")

Parameters payEventObjectName is the PayEvent object you are creating. 

merchantReference is the merchant reference property.

Description For example, authorization and capture are two pay events that together make 
up a complete customer payment. Credit is another type of pay event.

Properties • amount (PayEvent object)

• authCode

• avsResp

• eventID

• eventTime

• merchantReference (PayEvent object)

• paySvcData

Methods None.



Chapter 9, LivePayment object reference   197

Examples The following example creates a PayEvent object called “pay”:

pay = new PayEvent("2001");

“2001” is the merchantReference property.

paySvcData

Property. The payment service data or interchange compliant code, which is 
provided by the acquirer when the authorization is approved. 

Syntax payEventObjectName.paySvcData

Property of PayEvent

Description The payment service data is only provided for MasterCard and Visa credit cards.

The type is string.

The property is required for capture.

Examples See the example for the authCode property.

Processor

Object. Represents the bank card acquirer that handles payment transactions. 

Syntax There are two different syntax options for creating the new object. The first 
requires strings for the name and encryptPasswordFile properties. The 
second requires only the string for the name property. The default password 
file is picked up from the default configuration. This example shows the first 
syntax:

processorObjectName = new Processor("name","encryptPasswordFile");

This example shows the second syntax, which uses the default password file:

processorObjectName = new Processor("name");

Parameters processorObjectName is the new Processor object.

name and encryptPasswordFile are the processor name and the name of the file 
that contains the password for encryption. 

Description The Processor object represents the bank card acquirer that handles payment 
transactions.



198   Netscape LivePayment Developer’s Handbook

Properties • encryptPasswordFile

• name (Processor object)

Methods • authorize

• capture

• credit

• getCurrentBatch

• settleBatch

Examples The following examples show the two syntax options, depending upon 
whether you use the default values from the configuration or not. The first 
example does not use the default values:

processor = new Processor("FDC", "encryptPassword.txt");

In this example, the processor name is “FDC”, and the name of the file that has 
the encryption password is “encryptPassword.txt”.

The second example users the default password file:

processor = new Processor("FDC");

purchaseRequestTime

Property. The time the slip was created. 

Syntax slipObjectName.purchaseRequestTime

Property of Slip

Description This property is set automatically by the Slip object and cannot be set manually. 
It is read-only.

The type is string.

Examples The following example creates a slip and writes the purchase request time.

//
// generate a Slip
//
if slip = new Slip("5200000000000007", "199612", "10000", "USD"));



Chapter 9, LivePayment object reference   199

{
write("Slip created at ", slip.purchaseRequestTime);

}

registerLivePayment

Function. Registers LivePayment’s objects with LiveWire.

Syntax registerLivePayment()

Parameters None.

Description If you do not use the true parameter on registerNativeFunction you must use 
registerLivePayment on every page that uses LivePayment’s objects

Returns true if successful, false if unsuccessful.

Examples The following example registers the LivePayment objects in a page:

if (project.livepay == null)
{
result = registerLivePayment();
if (!result)

write("Register LivePayment objects failed");
}
//
// You can start using LivePayment objects in this page now.
//

See also registerNativeFunction function

registerNativeFunction

Function. Registers LivePayment’s registerLivePayment function and the 
shared library with LiveWire. The function should be invoked in the initial page 
of the LivePayment application 

Syntax registerNativeFunction("registerLivePayment", "library_path", 
"registerLivePayment", ["true"])

Parameters library_path is the pathname to the LivePayment shared library on your system.

Description You must register the registerLivePayment function and the shared library 
before you can use LivePayment’s objects in your application.



200   Netscape LivePayment Developer’s Handbook

If you set the fourth parameter to true, you do not need to invoke register-
LivePayment on each page that calls the LivePayment objects. LiveWire 
automatically invokes registerLivePayment for every page accessed in the 
application. If you do not use set the fourth parameter, or if you set it to false, 
you will have to register the objects on each page that uses the LivePayment 
objects.

Returns true if successful, false if unsuccessful.

Examples The following example registers the registerLivePayment function in the 
initial page of your application.

if (project.livepay == null)
{
project.livepay = registerNativeFunction("registerLivePayment",

"server_root/bin/https/libccp.so",
"registerLivePayment", "true");

}

server_root is the directory where the server is installed.

See also registerLivePayment function

salesCount

Property. The total number of sales in the batch. 

Syntax batchObjectName.salesCount

Property of Batch

Description The total number of sales in the batch. 

The type is number.

The property is required for settleBatch.

Examples The following example totals the sales count and sales amount.

//
// Total up amount and number of transactions to settle
//
var totalSalesAmt = 0;
var salesCount = 0;

database.beginTransaction();



Chapter 9, LivePayment object reference   201

purchaseCursor = database.cursor("select sum(amount), count(distinct 
ID) from crPurchase where batchID = " + batch.ID + " AND status = 
\"CAPTURED\"");

if (purchaseCursor.next())
{

totalSalesAmt = purchaseCursor[0];
salesCount = purchaseCursor[1];

}
else
{

purchaseCursor.close();
database.rollbackTransaction();
PrintError("Failed to get totalSalesAmt and salesCount for batch ", 

batch.ID);
}

purchaseCursor.close();

//
// Set up batch object
//
batch.merchantReference = batch.ID; 
batch.totalSalesAmount = totalSalesAmt;
batch.totalCreditAmount = 0;
batch.salesCount = salesCount;
batch.creditCount = 0;

See also totalSalesAmount property

settleBatch 

Method. Settles a batch for the processor.

Syntax processorObjectName.settleBatch(terminalObjectName, 
merchantObjectName, batchObjectName)

Parameters processorObjectName , terminalObjectName, merchantObjectName, and 
batchObjectName are the objects that have been created previously.

Method of Processor

Description Before settling a batch, you need to set the batch properties currency, 
merchantReference, totalSalesAmount, totalCreditAmount, salesCount, 
and creditCount.

Returns true if successful, false if unsuccessful.



202   Netscape LivePayment Developer’s Handbook

Examples This example settles the batch and also gives you messages if settleBatch was 
unsuccessful. The objects in this example are “processor”, “term”, “mer”, and 
“batch”.

if (!processor.settleBatch(term, mer, batch))
{

write("settle batch failed");
write("Processor status code = ", processor.getStatusCode());
write("Processor status message = ", processor.getStatusMessage());
processor.clearStatus();

}

Slip

Object. Contains credit card information and order information. 

Syntax There are two possible syntaxes for creating a slip. The first creates a Slip 
object:

slipObjectName = new Slip("cardNumber", "cardExpiration", "amount", 
"currency")

The second syntax recreates a slip from the encoded DER:

slipObjectName = new Slip("asciiDER")

Parameters For creating a new Slip object:

slipObjectName is the name of the slip.

cardNumber, cardExpiration, amount, and currency are the required 
properties.

For reconstructing the slip from the encoded DER:

slipObjectName is the name of the recreated slip.

asciiDER is the encoded DER in ASCII string, which is an opaque represen-
tation of the slip after the slip is encoded.

Description The slip contains credit card information and order information. The credit card 
data, such as the credit card number and expiration date, is encoded for 
security reasons. Some of the data cannot be accessed once encrypted. This 
encrypted information is used by the acquirer to approve and collect the 
payment for the merchant.



Chapter 9, LivePayment object reference   203

The slip includes two types of reference information: the customer order 
description and the merchant order description. The customer order description 
is supplied when the customer first enters the slip information. The merchant 
order description must match the customer description, but the merchant enters 
it later. 

The merchant order description is stored separately from the Slip object, so it 
can be updated even after the Slip object has been encoded. To enter 
merchant order description information, the merchant uses initMerchantOr-
derDesc and updateMerchantOrderDesc. The merchant order description 
must be completely updated before authorize, when it is verified against the 
customer order description.

Properties • amount (Slip object)

• billingStreet

• billingZip

• cardExpiration

• cardNumber

• cardType

• currency (Slip object)

• merchantReference (Slip object)

• purchaseRequestTime

Methods • appendMerchantOrderDesc

• appendOrderDesc

• encode

• getDER

• initMerchantOrderDesc

Examples The following example shows the creation of a new Slip:

slip = new Slip("5200000000000007", "199612", "10000", "USD");



204   Netscape LivePayment Developer’s Handbook

The following example shows the creation of a slip called “slip2” from the 
encoded file “asciiDER”.

slip2 = new Slip("asciiDER");

Terminal 

Object. A device on which card processing takes place.

Syntax There are two different syntax options. The first requires a string for the termi-
nalNumber property. The second requires no parameters, because it picks up 
the default terminalNumber from the configuration. This example shows the 
first syntax, with a string for the terminal number:

terminalObjectName = new Terminal("terminalNumber");

This example shows the second syntax, which uses the default configuration 
information:

terminalObjectName = new Terminal()

Parameters terminalObjectName represents the terminal object.

terminalNumber represents the terminal number received from the acquirer.

Description You can have more than one terminal. It is the equivalent of having a checkout 
counter at a supermarket; if you have multiple checkers, you can have multiple 
counters. In the same way, you can have multiple terminals. 

Properties • terminalNumber

Methods None.

Examples The following examples show the two syntax options, depending upon 
whether you use the default configurations or not.

This example shows the creation of a new Terminal object with a terminal 
number of “00003277999”.

term = new Terminal("00003277999");

This example picks up the default configuration information.

term = new Terminal();



Chapter 9, LivePayment object reference   205

terminalNumber

Property. The terminal number provided by the acquirer.

Syntax terminalObjectName.terminalNumber

Property of Terminal

Description The terminal number provided by the acquirer. You can set this property in 
your application or use the default value you set for this property in the 
LivePayment parameter configuration. For more information on configuring the 
parameters, see “Configuring the LivePayment parameters” on page 32.

The type is string.

The property is required.

Examples The first example sets the terminalNumber property while creating the 
Terminal object “term”.

term = new Terminal("00003277999");

The following example creates the Terminal object “term” by picking up the 
default value from the configuration.

term = new Terminal();

totalCreditAmount

Property. The total amount of money of the credit transactions in the batch.

Syntax batchObjectName.totalCreditAmount

Property of Batch

Description The total credit amount (in the smallest unit) of all credit card transactions in 
the batch. Must be a positive number.

The type is string. 

The property is required for settleBatch.

Examples batch.totalCreditAmount = 4485

See also creditCount property



206   Netscape LivePayment Developer’s Handbook

totalSalesAmount

Property. The total amount of all the sales in the batch.

Syntax batchObjectName.totalSalesAmount

Property of Batch

Description The total sales amount (in the smallest unit) of all credit card transactions in the 
batch. 

The type is string. 

The property is required for the settleBatch method.

Examples See the example for the salesCount property.

See also salesCount property



 

Part 4, Creating an application using the cpcmd utility   

 

207

 
4

 

Creating an application using 

the cpcmd utility

 

• Using the cpcmd utility



208   Netscape LivePayment Developer’s Handbook



Chapter 10, Using the cpcmd utility   209

C h a p t e r

10

 

Using the cpcmd utility

 

his chapter provides an overview and description of the LivePayment 

 

cpcmd

 

 (card processor command) utility. 

This chapter contains the following sections:

• Overview of cpcmd

• Using TraceFile and TraceLevel

• Command reference

T



Overview of cpcmd

210   Netscape LivePayment Developer’s Handbook

Overview of cpcmd
The LivePayment cpcmd utility authorizes, captures, credits, and creates a 
credit card slip, as well as settles a batch containing credit card transaction 
information. You can use the command in a script, for example a shell script, to 
issue credit card transaction utility commands.

Chapter 3, “Payment application concepts” contains a detailed description of 
the transaction flow for credit card processing. You should read this chapter 
before creating your payment application. It also describes strategies for 
creating a successful credit card processing application. For example, it 
includes information on maintaining a state for the payment and the batch so 
that you can recover from system down time. 

The cpcmd utility has several commands which process credit card transac-
tions. The commands are:

Transaction flow

The order in which you use these commands and which ones are required vary 
from situation to situation. The following description of the transaction flow 
may differ from your implementation. For a more detailed description of the 
credit card transactions, see “Credit card transactions” on page 52.

Command Description

Authorize Authorizes a purchase. No money is charged to the credit 
card, though an amount is reserved pending a capture.

Capture Captures a previously authorized purchase. This com-
mand charges the money to a customer’s credit card.

CreateSlip Creates a slip file of credit card data to be used by other 
commands. The information in this file is encrypted for 
security reasons. 

Credit Credits a purchase.

GetCurrentBatch Gives you the number of the current batch for credit card 
transaction information.

SettleBatch Settles a batch of credit card transaction information.



Chapter 10, Using the cpcmd utility   211

Overview of cpcmd

After you ask the customer for the credit card data, you use CreateSlip to 
create a slip. The data in the slip file is used by other credit card transactions. 

Depending upon the requirements of your acquirer and your preference for 
organizing your data, you may run GetCurrentBatch next to start a batch. 

When a customer indicates that he or she wants to make a purchase, run the 
Authorize command to check that the customer’s account has the required 
amount of money available. This command also puts a hold on the amount of 
the purchase.

Once the purchase has been authorized, run the Capture command to inform 
the acquirer of the actual amount of money to be charged. 

You can credit accounts using the Credit command.

If you are using batches, when you are ready to settle the batch use the Settle-
Batch command. The SettleBatch command compares totals you enter with 
totals contained in the batch and begins the transfer of funds between the 
merchant account and the card issuing banks.

Default configuration 

Some values for arguments used by the utility commands are set during config-
uration. Once set, you can omit the arguments and the default values are used 
as your application runs. 

You can set the defaults for the following items:

• Merchant number

• Terminal number

• Password file

For example, for a command that requires the TermNum and MerNum 
arguments you can either use the arguments and their values, or you can leave 
the arguments out and the utility will use the defaults in the configuration file. 
For example:

cpcmd -command getcurrentbatch -termnum 00003277999 
-mernum 00002650999



Overview of cpcmd

212   Netscape LivePayment Developer’s Handbook

can instead be sent with the default value for the terminal and merchant 
numbers: 

cpcmd -command getcurrentbatch

For more information on configuring the defaults, see Chapter 2, “Setting up 
Netscape LivePayment”.

Data storage

You will probably want to use a database to store the transaction state and 
payment activity information of your application. If you are using a scripting 
language such as Perl, refer to the associated documentation for information 
about integrating database access. 

Return values, output, and errors

The cpcmd utility returns 0 if it executes successfully, -1 if it does not. The 
commands send output (the batch number, authorization code, etc.) to stdout. 
Error messages go to stderr, unless you use the tracefile argument. 



Chapter 10, Using the cpcmd utility   213

Using TraceFile and TraceLevel

Using TraceFile and TraceLevel
For each of the cpcmd commands, you can also use the diagnostic arguments 
TraceFile and TraceLevel. These arguments are always optional.

Output The output is the output of the command with which you are using TraceFile.

Example The following example shows an example of how to use TraceFile with the 
GetCurrentBatch command.

 

cpcmd -command getcurrentbatch -mernum 00002650999 -termnum 00003277999 
-tracefile /tmp/cpcmd.trc

batch number 00023

This example shows a query of the open batch for a merchant number of 
00002650999 and a terminal number of 00003277999. It outputs the trace infor-
mation to the file /tmp/cpcmd.trc. Since no trace level was specified, the trace 
information defaults to level event and process ID.

Argument Description

-TraceFile trace_file The name of the file to which tracing infor-
mation is sent. 

-TraceLevel trace_level The level of tracing that is sent to the trace 
file. This argument is used only if the 
TraceFile argument is used. The default 
value is “LevelEvent|ProcessID”. Values 
include:
Time Timestamp each line of out-

put.
ProcessID Output process ID to each 

line of output.
DatedFile The trace filename will be 

dated, and a new file created 
each day.

LevelDebug Output debugging level 
information.

LevelEvent Output the event.
LevelDetail Output detail information.



Command reference

214   Netscape LivePayment Developer’s Handbook

The following example shows the /tmp/cpcmd.trc file:

11:21:20_23010: Argument Lists:
11:21:20_23010: ---------------
11:21:20_23010: Command = getcurrentbatch
11:21:20_23010: Processor = DefaultCardProcessor
11:21:20_23010: ConfigFile = system.ini
11:21:20_23010: ConfigDir = ../config
11:21:20_23010: TraceFile = /tmp/cpcmd.trc
11:21:20_23010: TraceLevel = LevelEvent|ProcessID
11:21:20_23010: Termnum = 00003277999
11:21:20_23010: Mernum = 00002650999
11:21:20_23010: 
11:21:20_23010: Execute command GetCurrentBatch:
11:21:20_23010: created txsccp_c(00002650999, 00003277999) = 0xe8880

The numbers on the left margin indicate the time and the process ID. 

Command reference
The following section describes the cpcmd commands in detail. They are listed 
in alphabetical order. For each command, the arguments are listed in alpha-
betical order. 

A few guidelines for using the utility and this documentation:

• There must always be a space between the argument and its value.

• Arguments are not case sensitive. For example, LivePayment accepts either 
TCreditAmt or tcreditamt. However, the values of arguments are case 
sensitive. For example, an authorization code of A456789 is not the same as 
an authorization code of a456789. Names of commands are not case-
sensitive (for example, authorize and Authorize both work).

• In the examples, the arguments are in mixed upper/lower case so that you 
can read them easily.

Authorize

The Authorize command authorizes a credit card for an amount of money. It 
reserves the amount authorized against the card’s credit limit, but does not 
make a charge against the credit card.



Chapter 10, Using the cpcmd utility   215

Command reference

Syntax cpcmd -Command Authorize -MerNum merchant_number 
-TermNum terminal_number -Currency currency -SlipAmount 
slip_ amount -Amount amount [-SlipFile slip_file] [-MerchantRef 
merchant_reference] -OrdDescFile order_description_file [-PswdFile 
password_file]

Arguments The following arguments are available for the Authorize command:

Argument Type Required/
Optional

Description

-Amount Integer Required The amount of money. The unit 
is based on the currency code. 
For the US dollar the unit is a 
cent. 

-Currency Alpha Required The three-character ISO 4217 
currency code. Some common 
codes:
USD  US dollar
CAD  Canadian dollar
FRF French Franc
For the complete list of cur-
rency codes, contact the Inter-
national Standards 
Organization.

-MerchantRef Alphanumeric Optional Reference information pro-
vided by the merchant for track-
ing purposes. If not specified, 
the default is the MerchantRef 
from the slip. Analogous to the 
merchantReference of the 
PayEvent object (if using Live-
Payment objects).

-MerNum Alphanumeric Required The merchant number, which is 
provided by the acquirer. 

-OrdDescFile String Required The name of the file that con-
tains the order description 
including type of goods 
ordered, price, delivery infor-
mation etc. 



Command reference

216   Netscape LivePayment Developer’s Handbook

Output If the authorization is successful, this command outputs a message saying the 
payment was authorized. In addition, it outputs the Authorization Code, the 
Payment Service Data, and the Address Verification Code. These values are 
required by the Capture command. and must be stored for use during capture.

Example The following example shows and example of the command followed by an 
example of the output:

cpcmd -command authorize -termnum 00003277999 -mernum 00002650999 
-slipamount 1295 -amount 1295 -orddescfile ord.dsc -currency USD 

Payment Authorized for USD1295
Authz code: 50TEST
Payment Svc data:MCC56789012345
AVS result: YYX

This example authorizes the amount of $12.95 (in US dollars). It uses the credit 
card information encoded in the file cpslip.slp. It references the order 
description file ord.dsc. It defaults to the slip’s merchant reference.

It outputs the amount that was authorized, the Authorization Code, the 
Payment Service Data, and the Address Verification result. You may get a result 
of all blanks for the Payment Service Data depending upon the card type. 
Payment Service Data is only used for Visa and Mastercard. For more infor-
mation on interpreting the AVS result, see “Results of authorize” on page 64. 

-PswdFile String Optional The filename of the password 
file containing the password 
used to encode/decode the slip. 
If not specified, the default is 
../config/lp-default-pswdfile.

-SlipAmount Integer Required The amount from the slip.

-SlipFile String Optional The filename of the slip. If not 
specified, the default is 
cpslip.slp.

-TermNum Alphanumeric Required The terminal number, which is 
provided by the acquirer. 

Argument Type Required/
Optional

Description



Chapter 10, Using the cpcmd utility   217

Command reference

Capture

The Capture command charges a customer for the amount authorized.

Once the transaction between the merchant and the customer is completed, the 
Capture command sends information back to the acquirer that authorized the 
transaction. 

Syntax cpcmd -Command Capture -MerNum merchant_number 
-TermNum terminal_number -Amount amount 
-AuthzCode authorization_code -PaySvcData “payment_service_data “
-AVS address_verification_code [-SlipFile slip_file] 
[-MerchantRef merchant_reference] -BatchNumber batch_number 
[-PswdFile password_file] -TranxId transaction_ID

The payment service data argument value is in quotes because the value of 
payment service data has a space in it.

Arguments The following arguments are available for the Capture command:

Argument Type Required/
Optional

Description

-Amount Integer Required The amount of money. The unit 
is based on the currency code. 
For the US dollar the unit is a 
cent. 

-AuthzCode Alphanumeric Required The authorization code, which is 
returned from the Authorize 
command.

-AVS Alpha Required The address verification service 
result, which is returned from the 
Authorize command.

-BatchNumber Integer Required The batch number generated by 
the GetCurrentBatch command.



Command reference

218   Netscape LivePayment Developer’s Handbook

Output If successful, outputs the currency code and the amount captured.

Example cpcmd -command capture -termnum 0003277999 -mernum 0002650999 -amount 
1295 -authzcode 50TEST -paysvcdata “MCC56789012345 TEST0001” -AVS YYX 
-batchnumber 00010 -tranxid 99912

captured USD1295

-MerchantRef Alphanumeric Optional Reference information provided 
by the merchant for tracking pur-
poses. If not specified, the default 
is the MerchantRef from the 
slip. Analogous to the mer-
chantReference of the 
PayEvent object (if using Live-
Payment objects).

-MerNum Alphanumeric Required The merchant number, which is 
provided by the acquirer. 

-PaySvcData Alphanumeric Required The payment service data or 
interchange compliant code, 
which is returned from the 
Authorize command. Payment 
service data is only used for Visa 
and Mastercard. 

-PswdFile String Optional The filename of the password file 
containing the password used to 
encode/decode the slip. If not 
specified, the default is ../config/
lp-default-pswdfile.

-SlipFile String Optional The filename of the slip. If not 
specified, the default is cpslip.slp.

-TermNum Alphanumeric Required The terminal number, which is 
provided by the acquirer. 

-TranxId Integer Required The transaction ID. It must be 
unique within the batch.

Argument Type Required/
Optional

Description



Chapter 10, Using the cpcmd utility   219

Command reference

This example captures 12.95 in US dollars. It uses the authorization code, 
payment service data, AVS response returned by the authorization. It uses the 
default values for the password file and the slip file. It uses the merchant 
reference from the slip.

CreateSlip

The CreateSlip command creates the electronic equivalent of a paper credit 
card slip.

Syntax cpcmd -Command CreateSlip -Currency currency 
-SlipAmount slip_amount [-ClientRef client_reference] 
[-MerchantRef merchant_reference] [-SlipFile slip_file] 
[-SlipExpDate slip_expiration_date] -CardType card_type 
-PAN personal_account_number -PANExpDate PAN_expiration_date 
[-OrdDescFile order_description_file] [-BillStreet billing_street] 
[-BillZip billing_zip_code] [-PswdFile password_file]

Arguments The following arguments are available for the CreateSlip command:

Argument Type Required/
Optional

Description

-BillStreet String Optional The billing street address of the 
credit card holder. You must 
enclose the value for this argu-
ment in quotes. 

-BillZip String Optional The billing zip code of the credit 
card holder. You must enclose 
the value for this argument in 
quotes. 

-CardType Alphanumeric Required The credit card type. Types are 
case-insensitive. Valid types are:
Visa
MasterCard
AmericanExpress
Discover
JCB 
DinersClub
CarteBlanche



Command reference

220   Netscape LivePayment Developer’s Handbook

-ClientRef String Optional Reference information provided 
by the customer for tracking pur-
poses.

-Currency Alpha Required The three-character ISO 4217 
currency code. Some common 
codes:
USD  US dollar
CAD  Canadian dollar
FRF French Franc
For the complete list of currency 
codes, contact the International 
Standards Organization.

-MerchantRef Alphanumeric Optional Reference information provided 
by the merchant for tracking 
purposes. If not specified, 
“00000000” is used. For FDC, the 
merchantReference is numeric. 
Analogous to the merchantRef-
erence of the Slip object (if 
using LivePayment objects).

-OrdDescFile String Optional The name of the file that con-
tains the order description 
including type of goods ordered, 
price, delivery information etc. If 
not specified, the default is 
cporddsc.slp.

-PAN Integer Required The personal account number or 
credit card number. 

-PANExpDate String Required The card expiration date 
(yyyymm). 

-PswdFile String Optional The filename of the password 
file containing the password 
used to encode/decode the slip. 
If not specified, the default is 
../config/lp-default-pswdfile.

Argument Type Required/
Optional

Description



Chapter 10, Using the cpcmd utility   221

Command reference

Output This command outputs a “slip created” message if the slip was created success-
fully.

Example The following example shows an example of the command followed by an 
example of the output:

cpcmd -command createslip -currency USD -amount 1295 -merchantref 1234 
-cardtype MasterCard -pan 5200000000000007 -panexpdate 199712 
-orddescfile ord.dsc -billstreet "234 First Street" -billzip "94043"

Slip created.

This example creates a slip for an amount of $12.95 in US dollars for a 
MasterCard card with a card number 5200000000000007 that expires on 12/97. 
Since no slip file is specified, the slip is in the default file cpslip.slp. Order 
description information is in the file ord.dsc. The billing street address and zip 
code are 234 First street, and 94043. 

Credit

The Credit command sends a credit transaction to the acquirer for all or part of 
the amount originally captured.

Syntax cpcmd -Command Credit -MerNum merchant_number 
-TermNum terminal_number -Amount amount -TranxId transaction_id 
[-SlipFile slip_file] [-MerchantRef merchant_reference] -BatchNumber 
batch_number [-PswdFile password_file]

-SlipAmount Integer Required The amount of money. The unit 
is based on the currency code. 
For the US dollar the unit is a 
cent. 

-SlipExpDate String Optional The slip expiration date (mmyy). 
After this date, the merchant 
stops using the slip.

-SlipFile String Optional The filename of the slip. If not 
specified, the default is 
cpslip.slp.

Argument Type Required/
Optional

Description



Command reference

222   Netscape LivePayment Developer’s Handbook

Arguments The following arguments are available for the Credit command:

Output If successful, outputs the amount credited.

Example cpcmd -command credit -termnum 0003277999 -mernum 0001250999 -amount 
1295 -tranxid 99913 -batchnumber 00010

credited USD1295

Argument Type Required/
Optional

Description

-Amount Integer Required The amount of money. The unit 
is based on the currency code. 
For the US dollar the unit is a 
cent. 

-BatchNumber Integer Required The batch number generated by 
the GetCurrentBatch com-
mand. 

-MerchantRef Alphanumeric Optional Reference information pro-
vided by the merchant for track-
ing purposes. If not specified, 
the default is the MerchantRef 
from the slip. Analogous to the 
merchantReference of the 
PayEvent object (if using Live-
Payment objects).

-MerNum Alphanumeric Required The merchant number, which is 
provided by the acquirer. 

-PswdFile String Optional The filename of the password 
file containing the password 
used to encode/decode the slip. 
If not specified, the default is 
../config/lp-default-pswdfile.

-SlipFile String Optional The filename of the slip. If not 
specified, the default is 
cpslip.slp.

-TermNum Alphanumeric Required The terminal number, which is 
provided by the acquirer. 

-TranxId Integer Required The transaction ID. It must be 
unique within the batch.



Chapter 10, Using the cpcmd utility   223

Command reference

This example credits $12.95 in US dollars. It uses the default slip file and 
password file. It uses the merchant reference from the slip.

GetCurrentBatch

GetCurrentBatch gives the batch number of the current batch. An open batch 
collects payment information to forward through the Gateway in batch mode. 

Syntax cpcmd -Command GetCurrentBatch -MerNum merchant_number 
-TermNum terminal_number

Arguments The following arguments are available for the GetCurrentBatch command:

Output Outputs the current batch number.

Example The following example shows an example of the command followed by an 
example of the output:

cpcmd -command getcurrentbatch -termnum 00003277999 -mernum 00002650999

Batch Number: 00157

This example opens a batch for a merchant with a merchant number of 
00002650999 and a terminal number of 00003277999. It returns the batch 
number 00157.

SettleBatch

SettleBatch settles a batch. A batch collects payment information in batch 
mode. 

Argument Type Required/
Optional

Description

-MerNum Alphanumeric Required The merchant number, which is 
provided by the acquirer. 

-TermNum Alphanumeric Required The terminal number, which is 
provided by the acquirer. 



Command reference

224   Netscape LivePayment Developer’s Handbook

Some of the arguments for SettleBatch are totals of sales and amounts that you 
have kept track of separately. SettleBatch compares the totals in your records 
with the totals in the batch.

Syntax cpcmd -Command SettleBatch -MerNum merchant_number 
-TermNum terminal_number -Currency currency 
-MerchantRef merchant_reference -BatchNumber batch_number 
[-TSalesAmt total_sales_amount] [-TCreditAmt total_credit_amount] 
[-TSalesCount total_sales_count] [-TCreditCount total_credit_count] 

Arguments The following arguments are available for the SettleBatch command:

Argument Type Required/
Optional

Description

-BatchNumber Integer Required The batch number generated 
by the GetCurrentBatch com-
mand. 

-Currency Alpha Required The three-character ISO 4217 
currency code. Some common 
codes:
USD  US dollar
CAD  Canadian dollar
FRF French Franc
For the complete list of currency 
codes, contact the International 
Standards Organization.

-MerchantRef Alphanumeric Required Reference information provided 
by the merchant for tracking 
purposes. Analogous to the 
merchantReference of the 
PayEvent object (if using Live-
Payment objects).

-MerNum Alphanumeric Required The merchant number, which is 
provided by the acquirer. 

-TCreditAmt Integer Optional The total credit amount. If not 
specified, this argument 
defaults to 0.

-TCreditCount Integer Optional The total number of credits. If 
not specified, this argument 
defaults to 0.



Chapter 10, Using the cpcmd utility   225

Command reference

Output If successful, outputs a message that the batch has been closed.

Example cpcmd -command settlebatch -mernum 00002650999 -termnum 00003277999 
-currency USD -merchantref 1234 -batchnumber 0023 -tsalesamt 55543 
-tsalescount 10 

batch 0023 closed

This example shows a command to settle the batch numbered 0023. The 
merchant reference information is 1234. The batch’s total sales are $555.43 in 
US dollars and ten sales make up the batch. Because the TCreditAmt and 
TCreditCount are not specified, they default to zero. This batch does not 
contain any credits. 

-TermNum Alphanumeric Required The terminal number, which is 
provided by the acquirer. 

-TSalesAmt Integer Optional The total sales amount. If not 
specified, this argument 
defaults to 0.

-TSalesCount Integer Optional The total number of sales. If not 
specified, this argument 
defaults to 0.

Argument Type Required/
Optional

Description



Command reference

226   Netscape LivePayment Developer’s Handbook



 

Part 5, Appendices   

 

227

 
5

 

Appendices

 

• Troubleshooting LivePayment

• Netscape-supported bank card 
acquirers



228   Netscape LivePayment Developer’s Handbook



Appendix A, Troubleshooting LivePayment   229

Appendix

A
Troubleshooting LivePayment

his chapter contains information on troubleshooting Netscape 
LivePayment and the card processor. 

This chapter contains the following sections:

• Troubleshooting overview

• Resolving card processor error messages

• Verifying the configuration

• Testing the gateway connection

• Using traceroute and telnet

• Checking the card processor log file

• Technical support

T



Troubleshooting overview

230   Netscape LivePayment Developer’s Handbook

Troubleshooting overview
For bank card processing, the card processor must be running and you must 
have a current batch. The batch should be closed at the end of a transaction 
period (for example, at the close of the business day). If you run into trouble, 
follow these steps:

1. Examine and resolve card processor and connection error messages.

2. Verify the configuration.

3. Check the card processor’s connection to the Gateway. 

4. Use traceroute to identify any Internet connectivity problems.

5. Use telnet to identify any Internet connectivity problems.

6. Check the card processor log file.

Resolving card processor error messages
If there is no error message (your machine just hangs), you may have an 
Internet connection problem.

1. Check all hardware connections and make sure that everything is plugged in 
securely.

2. Use traceroute (and then telnet) to the Gateway to see if you have Internet 
connectivity. Also try to ping some other Internet host—pick your favorite 
Internet site.

3. If none of this works, your Internet connection is probably down. Contact 
your ISP. If you do have Internet connectivity, but your Netscape product is 
still hanging, contact Technical Support.

Refer to the following table for the cause of errors and what action to take. 
Card processor connection error messages are at the end of this table on page 
240. Some of the messages contain a %0 or %1. These are variables that will be 
replaced with a literal string in the error message you see. For example, in the 
message



Appendix A, Troubleshooting LivePayment   231

Resolving card processor error messages

“Missing parameter: %0”

the %0 may be “Terminal ID number,” and that is what you’d see in the error 
message:

“Missing parameter: Terminal ID number”

Most of the error messages in this table begin with cardtxerr. For simplicity, 
the messages are listed in numerical order with the cardtxerr prefix dropped:

 Message Cause Action

1000, "Encountered bank card transaction 
error: %0"

Generic bank card transaction 
error

Look at additional error message 
info.

1002, "Bank card processing internal error: 
%0"

Generic bank card internal 
error

Contact Technical Support.

1004, "Bank card processing internal error: %0 
[%1]"

Generic bank card internal 
error

Contact Technical Support.

1006, "Missing parameter: %0" Missing parameter Check your configuration and 
permissions.

1008, "Parameter value for %0 is not a valid 
number"

Parameter value is not a valid 
number

Check your configuration and 
permissions.

1010, "Daemon %0 already running" Daemon already running Shut down existing daemon first 
before restarting.

1012, "Batch does not have correct data" Batch does not have correct 
data

Check your configuration and 
permissions. Make sure you have 
input valid data and that all 
parameters in your configuration 
are correct. Make sure the card 
processor is running.

1014, "Slip does not have correct data" Slip does not have correct 
data

Check your configuration and 
permissions.

1016, "Payment does not have correct data" Payment does not have 
correct data

Check your configuration and 
permissions.

1018, "Payment Event does not have correct 
data"

Payment Event does not 
have correct data

Check your configuration and 
permissions.



Resolving card processor error messages

232   Netscape LivePayment Developer’s Handbook

1020, "Cannot allocate memory to create '%0' 
object"

new() failed Check your configuration and 
permissions. Make sure your 
system has sufficient resources 
(memory, swap space, etc.) and is 
not overloaded.

1022, "Invalid processor: %0" Invalid processor Check your configuration and 
permissions.

1024, "Term does not have correct data" Term does not have correct 
data

Check your configuration and 
permissions.

1026, "Merchant does not have correct data" Merchant does not have 
correct data

Check your configuration and 
permissions.

1028, "Cannot open file %0 for reading: %1" Cannot open file for reading Make sure file exists and is read-
able.

1030, "Cannot open ACL file %0 for reading" fopen could not open ACL 
file for reading

Verify that the ACL file exists and 
is readable by user.

1032, "A line in the ACL file is too long:" A line is terminated by 
newline or EOF, and should 
be less than 2K bytes

Verify that all the lines in the ACL 
file are correct.

1034, "Cannot certify because CA issuer is 
invalid"

The CA issuer name is not in 
the ACL file

Verify that all the lines in the 
ACL file are correct, and 
compare this CA issuer to those 
specified in the ACL file. This CA 
issuer name may also be badly 
formatted.

1036, "Cannot certify because serial number is 
invalid"

The serial number is not in the 
set for the specified CA issuer

Verify that all the lines in the 
ACL file are correct, and 
compare this serial number to 
those in the ACL file. The serial 
number may also be badly 
formatted.

1038, "Merchant ID not in the set" Merchant ID not in ACL file Verify that all the lines in the 
ACL file are correct. The 
merchant ID may also be badly 
formatted.

 Message Cause Action



Appendix A, Troubleshooting LivePayment   233

Resolving card processor error messages

1040, "There is no merchant ID for this set" There is no merchant ID set 
for the specified CA issuer and 
serial number

Verify that all the lines in the 
ACL file are correct. The serial 
number may also be badly 
formatted.

1042, "The ACL file is not in proper format" A line is terminated by 
newline or EOF, and should 
be less than 2K bytes

Check the ACL file. Either a ']' or 
a delimiter is missing.

1500, "Card processor is not online" Card processor is not online Check your configuration and 
permissions.

1502, "Card processor does not support batch" Card processor does not 
support batch

Check your configuration and 
permissions.

1504, "No batch number" No batch number Make sure you get a batch 
number.

1506, "Information for the given batch object 
is not available"

Information for the given 
batch object is not available

Make sure the batch object is sup-
plied with the information.

1508, "Batch response error: %0" Batch response error Contact Technical Support.

1510, "Invalid card type: %0" Invalid card type Input a valid card type. The 
values should be: 
Visa: 012
Mastercard: 112
Amex: 212
Diners Club/CarteBlanche: 312
Discover: 512
JCB: 914

1512, "Invalid Slip Purchase Information 
Encryption Algorithm ID."

Invalid Slip PI encryption 
algorithm ID

Make sure you use the correct 
slip.

1514, "Batch not in open state" Batch not in open state Verify that the batch is in open 
state.

1534, "Invalid Card Number: %0" Invalid card number Input a valid card number, with 
no dashes or spaces. See 
“Checking for valid bank card 
numbers” on page 241 at the end 
of this table.

1540, "Invalid Merchant Reference: %0" Invalid Merchant Reference Input a valid Merchant Reference.

 Message Cause Action



Resolving card processor error messages

234   Netscape LivePayment Developer’s Handbook

1542, "Invalid Billing Street: %0" Invalid Billing Street Check that the bank card billing 
address and zip code are valid. 
The address should agree with 
the address on the bank card 
billing statements.

1544, "Invalid Billing Zipcode: %0" Invalid Billing Zipcode Check that the bank card billing 
address and zip code are valid. 
The address should agree with 
the address on the bank card 
billing statements.

1546, "Referral - Call Voice Center" A variety of causes may 
produce this message, 
including an expired card.

Call your acquirer’s voice center 
to get approval.

1548, "Declined" Declined Check that the card is valid, and 
that it is not over the credit limit.

1550, "Card Expired" Card Expired Use a valid, unexpired card and 
check that the entered dates are 
correct.

1552, "Invalid Master Card Summary Invoice: 
%0"

Invalid Master Card Summary 
Invoice

Input a valid Merchant Reference. 

1554, "Invalid American Express Card 
Summary Invoice: %0

Invalid American Express 
Card Summary Invoice

Input a valid Merchant Reference. 

1556, "Invalid Diner’s Club Card Summary 
Invoice: %0"

Invalid Diner’s Club Card 
Summary Invoice

Input a valid Merchant Reference.

1558, "Invalid Discover Card Summary 
Invoice: %0"

Invalid Discover Card 
Summary Invoice

Input a valid Merchant Reference. 

1560, "Invalid Authorization Code: %0" Invalid Authorization Code Input a valid Authorization Code.

1562, "Invalid Payment Service Data: %0" Invalid Payment Service Data Input valid Payment Service Data. 

1564, "Close batch reports out of balance con-
dition"

Close batch reports out of 
balance condition

Double-check the total amount 
and count of sales and credit. 

1566, "Invalid Visa Card Summary Invoice: 
%0"

Invalid Visa Card Summary 
Invoice

Input a valid Merchant Reference. 

1568, "Cannot open control file for reading: 
%0"

Cannot open control file for 
reading

Make sure the card processor is 
running and the control file exists 
and is readable.

 Message Cause Action



Appendix A, Troubleshooting LivePayment   235

Resolving card processor error messages

1570, "Cannot open FIFO file for writing: %0" Cannot open FIFO file for 
writing

Make sure file exists and is writ-
able.

1572, "Write to FIFO file failed: %0" Write to FIFO file failed Make sure file exists and is writ-
able.

1574, "Cannot get message queue ID: %0" Write to FIFO file failed Check your configuration and 
permissions. Make sure the 
message queue is in good 
shape.

1576, "Read from message queue interrupted: 
%0"

Read from message queue 
interrupted

Determine why the application 
was interrupted.

1578, "Read from message queue failed: %0" Read from message queue 
failed

Make sure the message queue 
exists.

1580, "Response timeout" Response timeout Contact acquirer Technical 
Support and make sure the card 
gateway is running. For average 
response times, see “Response 
time from the acquirer” on 
page 242. 

2000, "Database query returns no result" Data not found Check your configuration and 
permissions.

2002, "Database value for %0 column is unex-
pectedly null"

Unexpected null DB result Check your configuration and 
permissions.

2004, "Invalid batch state: %0" bat_status column value Check your configuration and 
permissions.

2006, "This merchant and card processor
combination has too many batches in
open/closing state. [Merchant primary key %0] 
[Card Processor primary key %1]"

Too many rows returned 
from DB

Check your configuration and 
permissions.

2008, "Database server error" RWDBStatus::serverError Look at additional error message.

2010, "Database server message" RWDBStatus::serverMessage Look at additional error messages.

2012, "Database library error" RWDBStatus::vendorLib Look at additional error messages.

2014, "Database error" other RWDBStatus error Look at additional error messages.

2016, "Already has an open or closing batch: 
%0"

You can have only one open 
or closing batch

Make sure that only one batch is 
open or closing at a time.

 Message Cause Action



Resolving card processor error messages

236   Netscape LivePayment Developer’s Handbook

2018, "Too many rows returned from DB from 
%0 table"

DB returned too many rows Check integrity of your DB.

3000, "Invalid Term parameter provided" A null or invalid term 
parameter was passed in

Pass in the correct term param-
eter.

3100, "Term ID: %0, Term num: %1 does not 
belong to any Merchant"

Cannot locate the Merchant 
that owns this Term

The terminal number is not cor-
rect. Check that you correctly 
entered the terminal number you 
received from the acquirer.

3102, "Merchant %0 is not associated with Pro-
cessor %1"

Merchant has not established 
the relationship with the 
Processor

Your merchant number is not 
valid for your acquirer. Check that 
you correctly entered the mer-
chant number received from 
your acquirer. 

3200, "Last batch for Term ID %0, Term num 
%1 is not closed"

Can open a batch for the 
terminal only when the last 
batch has been closed

Properly close the batch for the 
terminal before opening a batch.

3300, "Persistence error [%0] [%1]: [%2]" Persistence runtime error Contact Technical Support.

3500, "Invalid Term parameter provided" A null or invalid Term 
parameter was passed in

Pass in the correct Term param-
eter.

3502, "Invalid Batch parameter provided" A null or invalid Batch 
parameter was passed in

Pass in the correct Batch param-
eter.

3504, "Invalid Merchant parameter provided" A null or invalid Merchant 
parameter was passed in

Pass in the correct Merchant 
parameter.

3506, "Invalid Processor parameter provided" A null or invalid Processor 
parameter was passed in

Pass in the correct Processor 
parameter.

3508, "Invalid PayEvent parameter provided" A null or invalid PayEvent 
parameter was passed in

Pass in the correct PayEvent 
parameter.

3510, "Invalid Slip parameter provided" A null or invalid Slip param-
eter is passed in

Pass in the correct Slip parameter.

3512, "Order description from Slip and Mer-
chant don't match"

Order description from Slip 
and Merchant don’t match

Check the steps and content of 
order description generation.

3514, "Cannot open the configuration file, 
error %0"

Cannot open the configuration 
file

Check the location and protection 
of the configuration file.

 Message Cause Action



Appendix A, Troubleshooting LivePayment   237

Resolving card processor error messages

3516, "The data of object %0 is not OK/com-
plete for operation %1"

The data of object is not OK/
complete for the operation

Make sure the object is in good 
status and the relevant properties 
for the operation have been set 
properly.

3518, "Encrypted password file is not pro-
vided"

Encrypted password file is not 
provided

Make sure the encrypted pass-
word file is provided.

3520, "Invalid date format in property %0.%1" Invalid date format in the 
object property

Make sure the date format is in 
YYYYMM.

3522, "Property %1 in object %0 is not OK/
complete for operation %2"

The property in object is not 
OK/complete for the opera-
tion

Make sure the relevant properties 
in the object for the operation 
have been set properly.

3524, "Amount %0 in object %1 exceeds the 
amount in object Slip for operation %2"

The amount in object exceeds 
the amount in object Slip for 
the operation

Make sure the amount in the 
object does not exceed the 
amount in the object Slip.

4000, "Invalid argument: %0" An invalid argument Use the correct argument.

4002, "Duplicate argument: %0" Duplicate argument Use the correct argument.

4004, "Missing argument: %0" Missing argument Use the correct argument.

4006, "Invalid argument value: %0" An invalid argument value Use the correct argument value.

4008, "Missing value for argument: %0" Missing argument value Supply the argument value.

4010, "Cannot obtain parameter: %0 [%1]" Missing parameter Check your configuration and 
permissions.

4100, "Invalid number of arguments passed in 
method %0.%1"

Invalid number of arguments Use the correct number of argu-
ments.

4102, "No arguments allowed in method 
%0.%1"

No arguments allowed in 
this method

Do not pass in arguments to this 
method.

4104, "Mismatched argument passed in 
method %0.%1"

Provided argument(s) not 
matched

Use the correct argument(s).

4120, "Object %0 is not constructed properly" Object is not constructed 
properly

Provide proper argument(s) to 
construct the object.

4122, "Property %0.%1 cannot be set" This property cannot be set This property cannot be set.

4124, "Invalid number [%0] is assigned to 
property %1.%2"

Invalid number is assigned 
to property

Use the correct number.

 Message Cause Action



Resolving card processor error messages

238   Netscape LivePayment Developer’s Handbook

4126, "Missing value in property %1.%2" Missing value in the property A value is missing in the property.

4140, "Method %0.%1 failed" Method failed Check the arguments and the 
status of the object.

4190, "LivePayment software has expired" LivePayment software has 
expired

Upgrade LivePayment to a newer 
version or contact Technical 
Support for details.

5000, "Card Processor Error %0 -- Invalid 
transaction code: %1"

Invalid transaction code Input a valid transaction code.

5002, "Card Processor Error %0 -- Terminal
ID not set up to capture this card type"

Terminal ID is not set up to 
capture this card type

Input a valid Terminal ID/card 
type combination or contact 
acquirer Technical Support to 
accept this card type.

5004, "Card Processor Error %0 -- Terminal ID 
not set up to authorize this card type

Terminal ID not set up to 
authorize this card type

Input a valid Terminal ID/card 
type combination or contact 
acquirer Technical Support to 
accept this card type.

5006, "Card Processor Error %0 -- Invalid card 
expiration date"

Invalid card expiration date Input a valid expiration date in 
the correct format, using an unex-
pired card.

5008, "Card Processor Error %0 -- Invalid 
Process Code, Authorization Type or Card 
Type"

Invalid Process Code, 
Authorization Type or Card 
Type

Contact Technical Support.

5010, "Card Processor Error %0 -- Invalid 
Transaction or Other Dollar Amount: %1"

Input a valid Transaction or 
Other Dollar Amount

Input a valid Transaction Amount. 
If FDC is your acquirer: For auth/
capture, the max amt. is 7 digits. 
For close batch, the max amt. is 9 
digits (including the 2 decimal 
digits for cents, but excluding the 
decimal itself).

5012, "Card Processor Error %0 -- Invalid Entry 
Mode"

Invalid Entry Mode Contact Technical Support.

5014, "Card Processor Error %0 -- Invalid Card 
Present Flag"

Invalid Card Present Flag Contact Technical Support.

5016, "Card Processor Error %0 -- Invalid 
Customer Present Flag"

Invalid Customer Present Flag Contact Technical Support.

 Message Cause Action



Appendix A, Troubleshooting LivePayment   239

Resolving card processor error messages

5018, "Card Processor Error %0 -- Invalid 
Transaction Count Value"

Invalid Transaction Count 
Value

Contact Technical Support.

5020, "Card Processor Error %0 -- Invalid 
terminal type"

Invalid terminal type Contact Technical Support.

5022, "Card Processor Error %0 -- Invalid 
terminal capability"

Invalid terminal capability Contact Technical Support.

5024, "Card Processor Error %0 -- Invalid 
source ID"

Invalid source ID Check your configuration and 
permissions.

5026, "Card Processor Error %0 -- Invalid 
batch number"

Invalid batch number Input a valid batch number. It 
should be numeric and increase 
by one. If your next batch is a 
random number, then you’re 
using the dummy test. 

5028, "Card Processor Error %0 -- Invalid mag 
stripe data"

Invalid mag stripe data Contact Technical Support.

5030, "Card Processor Error %0 -- Invalid 
Merchant Reference"

Invalid Merchant Reference Input a valid Merchant Reference.

5032, "Card Processor Error %0 -- Invalid 
transaction date or time"

Invalid transaction date or 
time

Contact Technical Support.

5034, "Card Processor Error %0 -- Invalid card 
processor merchant number: %1"

Invalid merchant number in 
card processor DB

Input valid merchant number.

5036, "Card Processor Error %0 -- File access 
error in card processor DB"

Encountered file access error 
in card processor DB

Contact acquirer Technical Sup-
port.

5038, "Card Processor Error %0 -- Terminal 
flagged as inactive in card processor DB"

Terminal flagged as inactive in 
card processor DB

Contact acquirer Technical Sup-
port.

5040, "Card Processor Error %0 -- Invalid Mer-
chant/Terminal ID combination"

Invalid Merchant/Terminal ID 
combination

Input a valid Merchant/Terminal 
ID. Check the Merchant/Terminal 
IDs and restart the server. 
Confirm IDs with acquirer. 

5042, "Card Processor Error %0 -- Unrecover-
able card processor DB error"

Card processor encountered 
unrecoverable DB error from 
an authorization process

Contact acquirer Technical Sup-
port.

5044, "Card Processor Error %0 -- DB access 
lock encountered"

Card processor DB access 
lock encountered

Contact Technical Support.

 Message Cause Action



Resolving card processor error messages

240   Netscape LivePayment Developer’s Handbook

5046, "Card Processor Error %0 -- DB error in 
summary process"

Encountered card processor 
DB error in summary process

Contact Technical Support.

5048, "Card Processor Error %0 -- Transaction 
ID invalid, incorrect, or out of sequence"

You have given an invalid, 
incorrect, or out of sequence 
Transaction ID.

Input a valid Transaction ID. .

5050, "Card Processor Error %0 -- Terminal ID 
not usable"

Terminal ID not usable Input a valid Terminal ID.

5052, "Card Processor Error %0 -- Terminal ID 
not set up: %1"

Terminal ID not set up Input a valid Terminal ID. 

5054, "Card Processor Error %0 -- Capture 
transaction for batch where earlier Batch ID 
still open"

Capture transaction for batch 
where earlier Batch ID still 
open

Contact acquirer Technical Sup-
port.

5056, "Card Processor Error %0 -- Invalid 
account number found by authorization pro-
cess"

Invalid account number found 
by authorization process

Input a valid card number.

5058, "Card Processor Error %0 -- Invalid 
capture data found in batch process (trans 
level)"

Invalid capture data found in 
batch process (trans level)

Input valid capture data.

5060, "Card Processor Error %0 -- Invalid 
capture data found in batch process (batch 
level)"

Invalid capture data found
in batch process (batch level)

Input valid capture data.

5062, "Card Processor Error %0 -- General 
system error"

General system error Contact acquirer Technical
Support.

5064, "Card Processor Error %0 -- Invalid 
Payment Service Data"

Invalid Payment Service Data Input valid Payment Service Data.

5066, "Card Processor Error %0 -- Unknown 
processor error"

Unknown card processor
error

Contact acquirer Technical
Support.

Card processor connection errors

Error:-1. Cannot establish secure connection 
to the Gateway.

Socket Error. Make sure your machine is not 
running out of resources and net-
working is functioning properly.

 Message Cause Action



Appendix A, Troubleshooting LivePayment   241

Resolving card processor error messages

Table notes

Checking for valid bank card numbers

The following table lists valid formats for bank card numbers at the time of this 
writing:

Error:-2. Cannot establish secure connection 
to the Gateway.

Invalid Hostname for 
Gateway. You may also get 
this error if the Gateway certif-
icate has expired.

1. Try again.
2. Verify the card processor host 
name.
3. Try traceroute to your 
Gateway. If successful, try the 
card processor again.
4. Try telnet to your Gateway. If 
successful, try the card processor 
again.
5. If none of the above works, 
your Internet connection is prob-
ably down. Contact your ISP. 

Error:-3. Cannot establish secure connection 
to the Gateway.

SSL Connect Failed. 1. Try again.
2. Verify the host port number in 
the LivePayment configuration.
3. Try traceroute to your 
Gateway. If successful, try the 
card processor again.
4. Try telnet to your Gateway 
with the port number. If suc-
cessful, try the card processor 
again.
5. If none of the above works, 
contact Technical Support to 
make sure your IP address is 
authorized and to ask for a valid 
port number. 

Error:-4. Cannot establish secure connection 
to the Gateway.

Security Database Error. Check your configuration to see 
that all parameters are set cor-
rectly, especially the parameters 
related to certificate and key pair 
files.

 Message Cause Action



Verifying the configuration

242   Netscape LivePayment Developer’s Handbook

Table 10.1 Valid bank card number formats

Response time from the acquirer

Transactions across the Internet generally have the following response times 
when you are running in production mode:

Table 10.2 Estimated response times

If no response is received in 50 seconds, the system will timeout.

Verifying the configuration
Some errors are the result of the LivePayment and card processor configuration. 
To check your configuration, use the configuration forms. For more infor-
mation, see Chapter 2, “Setting up Netscape LivePayment”.

 Card name Valid format

Visa First digit must be 4 and the length must be 13 or 16 digits.

AMex First digit must be 3 and second digit a 4 or 7. The length must be 
15 digits.

Diners Club & 
CarteBlanche 

First digit must be 3 and second digit 0, 6, or 8. The length must be 
14 digits.

Discover First four digits must be 6011 and the length must be 16 digits.

JCB First four digits must be 3088, 3096, 3112, 3158, 3337, or 3528. The 
length must be 16 digits.

Transaction Estimated Time

Authorize Less than 10 seconds

Capture Less than 10 seconds

Get Current Batch Approximately 1 second

Settle Batch Approximately 1 second



Appendix A, Troubleshooting LivePayment   243

Testing the gateway connection

Testing the gateway connection
To determine whether you can communicate with your Gateway, use the Test 
Connection button on the Card Processor Administration page. For more 
information, see Chapter 2, “Setting up Netscape LivePayment”.

Using traceroute and telnet
Currently, many applications will only use the first IP address in a multiaddress 
list (although there are a number of common TCP/IP application programs, like 
telnet, which when unable to connect to the first address in a list, will automat-
ically attempt to connect with other addresses on the list).

You may use the Unix host or nslookup commands to display the IP address 
list (rather than just the first address in a list):

host ccgw.card.net

or

nslookup 

server hostname

Between LivePayment and the acquirer gateways are various Internet hosts, 
including packet-filtering firewalls. These firewalls maintain IP addresses of 
machines that are authorized to access the Gateway. If a machine is not on the 
authorization list, a telnet command from that machine will not be allowed to 
connect to the LivePayment service port (even when the traceroute command 
indicates general Internet connectivity).

In rare situations, where traceroute indicates connectivity and a server is 
known to be authorized, but the telnet command is not able to connect, the 
card processor service at that particular gateway may be temporarily 
unavailable.

1. Use the traceroute command to determine Internet connectivity to a 
specific gateway.

2. Use the telnet command (specifying the card processor service port) to 
determine access authorization and service availability at a specific gateway.



Using traceroute and telnet

244   Netscape LivePayment Developer’s Handbook

Using traceroute
Note The traceroute utility is available only on some Unix systems. For example, 

Solaris™ doesn’t ship with this utility. It is widely available from various sources 
on the Internet, however.

Use traceroute to determine Internet connectivity to a specific gateway 
(traceroute uses only the first address in the case of a multi-address list):

1. traceroute ccgw1.card.net

2. traceroute ccgw2.card.net 

3. traceroute ccgw.card.net 

Here is an example of a successful traceroute connection:

Sample traceroute
output

% traceroute ccgw.card.net

traceroute to ccgw.card.net (204.254.78.2), 30 hops max, 40 byte packets

1 unknown.netscape.com (198.93.93.2) 18.64 ms 7.103 ms 4.165 ms

2 border2-hssi3-0.SanFrancisco.mci.net (204.70.33.9) 3.258 ms 19.778 ms 3.937 ms

3 borderx2-fddi0-0.SanFrancisco.mci.net (204.70.3.164) 7.772 ms 3.73 ms 4.413 ms

4 fix-west-nap.SanFrancisco.mci.net (204.70.158.118) 25.168 ms 5.252 ms 5.651 ms

5 san-jose5.ca.alter.net (198.32.136.42) 223.676 ms 364.317 ms 56.731 ms

6 San-Jose7.CA.ALTER.NET (137.39.27.3) 14.772 ms 13.191 ms 18.256 ms

7 Palo-Alto1.CA.ALTER.NET (137.39.29.3) 31.261 ms 12.756 ms 11.697 ms

8 card-gw.CA.ALTER.NET (137.39.246.58) 20.832 ms 19.988 ms 15.63 ms

9 fw2.card.net (204.254.78.2) 14.91 ms 15.596 ms 19.142 ms

If your packet is detained, traceroute shows where the problem occurred. If 
traceroute finds a problem with your packet’s transmission through the 
Internet, the problem is probably beyond your control. Wait until the problem 
with the errant host has cleared, or notify the responsible system administrators 
or your Internet Service Provider (ISP). Refer to the traceroute man page for 
detailed information.

 

✔Check to see that both gateways are up.

traceroute will trace the route of one of the 
two

}



Appendix A, Troubleshooting LivePayment   245

Checking the card processor log file

Using telnet

There are other failure modes besides Internet connectivity. Your IP address 
might not be in the authorization list in the packet filtering router. There is 
currently no way of testing for that with traceroute.

To determine authorization, as well as the ability to establish a TCP session 
between the merchant machine and the firewall, use telnet:

telnet host port (host and port provided by acquirer)

For example:

1. telnet ccgw1.card.net 999

2. telnet ccgw2.card.net 999

3. telnet ccgw.card.net 999

Sample telnet output

Successful
connection

% telnet ccgw.card.net 999

Trying 165.90.142.2 ...

Connected to ccgw.card.net.

Escape character is '^]'.

Unsuccessful
connection

% telnet ccgw.card.net 999

Trying 204.254.78.2...

telnet: connect to address 204.254.78.2: Connection timed out

Checking the card processor log file
Check the card processor log file to determine where the link may have 
broken. You designate the log file when you configure the card processor 
parameters. For more information, see “Configuring the card processor param-
eters” on page 33. 

✔Check to see that both gateways are up.

 

telnet

 

 will randomly connect to the first of the 
two available addresses

 

}



Checking the card processor log file

246   Netscape LivePayment Developer’s Handbook

The following sample log file output shows you a successful transaction. An 
example of a broken link is at the end of the following sample log. You can 
also tell how long it takes to perform transactions. In the following example, 
one second elapsed between the time the request was read and a response was 
sent back to the client.

Sample card processor log file:

Certificate
information

(4003)1996.01.24/22:52:01: Peer/Gateway's certificate:

(4003)1996.01.24/22:52:01: Version: 00
Serial Number: 02:7A:00:00:FE
Issuer:  C=US, O=RSA Data Security, Inc., OU=Secure Server Certification
Authority
Subject: C=US, ST=California, L=Mountain View, O=Netscape 
Communications,
OU=NOT A VALID CERTIFICATE. DO NOT TRUST. DO NOT XFER SECURE DATA.,
CN=notavalidhost.mcom.com

(4003)1996.01.24/22:52:01: 

Read request
message from the

client

(4003)1996.01.24/22:52:05: CCPD:read:fifo check input

(4003)1996.01.24/22:52:05: CCPD:check_input: ThreadID: 4012 CmdType: 0 
ReqLen 42 RespLen 60 Version 0 CDPType 0

(4003)1996.01.24/22:52:05: CCPDProcessFifo: Msg 0xc6160, ThreadID 4012 
Type 0,tx_code 006, term_id 00003277845

Read response
message from the

Gateway

(4003)1996.01.24/22:52:06: CCPD:read:ssl check reply

(4003)1996.01.24/22:52:06: CCPD:check_input: ThreadID: 4012 CmdType: 0 
ReqLen 42 RespLen 60 Version 0 CDPType 0

(4003)1996.01.24/22:52:06: CCPDSslRead: Msg 0xc6160, ThreadID 4012

Send response back
to the client

(4003)1996.01.24/22:52:06: RespMsg: tx_code 007, term_id 00003277845, 
tx_id, resp A, err_code 00

(4003)1996.01.24/22:52:06: CCPDRespondFdc: Msg 0xc6160, ThreadID 4012

 

process id 
(pid) date/time message



Appendix A, Troubleshooting LivePayment   247

Technical support

Sample showing broken connection

The following shows what you can expect to see if the Internet SSL is down. 
The card processor will keep trying until successful. If this doesn’t happen 
within 15 minutes or so, try checking for Internet connectivity using telnet or 
traceroute. Contact your ISP if your connection is down. Contact Technical 
Support if you have Internet connectivity but still get this message:

SSL connection is
down. Keeps trying

(947)1995.11.02/19:29:50: CCPD:NetRead: SSL connection disconnected

SSL connection rees-
tablished

(947)1995.11.02/19:32:44: CCPD:: SSL re-connection successful

Technical support
If you’re unable to resolve the problem, call Technical Support at (415) 937-
2727. You’ll need to provide the following information:

• Customer number

• Product and version numbers

• Description of the problem; if there is an error message, record the exact 
message and keep it on hand

• Steps to recreate the problem (if possible)

For non-urgent problems, send email to iapps-support@netscape.com. 
Netscape will respond in one business day.



Technical support

248   Netscape LivePayment Developer’s Handbook



Appendix B, Netscape-supported bank card acquirers   249

Appendix

B
Netscape-supported bank

card acquirers

his appendix contains information on the following Netscape-supported 
bank card acquirer:

• First Data Corporation (FDC)

First Data Corporation (FDC)
Netscape Communications has established a relationship with First Data Corpo-
ration (FDC), a financial institution that can assist you in locating an acquirer. 
For additional information about FDC and their Internet card processing 
service, visit the following Web site:

http://www.firstdata.com/ecom.html 

You can also send e-mail to emerchant@netscape.com or call (415)842-4085.

Establishing a credit card business agreement

In order to run your application in production mode, you must establish a 
credit card business agreement with a bank card acquirer. After your business 
agreement is in place, your bank card acquirer should provide you with the 
following parameters:

T



First Data Corporation (FDC)

250   Netscape LivePayment Developer’s Handbook

• Merchant number

• Terminal number

• Merchant source ID

• Credit card gateway host name

• Credit card gateway port number

This information is required for configuring the LivePayment credit card 
processor. For configuration information regarding credit card transactions, see 
Chapter 2, “Setting up Netscape LivePayment”.

For additional information about establishing a merchant account, you can visit 
the Netscape home page at 

http://home.netscape.com/eng/LivePayment

Obtaining test processing parameters

In order to properly test your LivePayment application as a developer or while 
waiting for the setup of your merchant account, you must enable communica-
tions with a test bank card gateway. Netscape has fielded a test bank card 
gateway at FDC so that your LivePayment-based application can send financial 
transactions and receive responses in a test environment.

To communicate with that gateway you need to fill in a brief application form. 
For more details, see the Netscape home page at:

http://home.netscape.com/eng/LivePayment

Click Developer Sign-up for more details. After filling in the necessary forms, 
you will receive the needed data parameters. You need to obtain your certif-
icate before filling in the requested form.

When you receive your test values, you can change from operating in loopback 
mode to operating in test mode. For more information on test mode and 
loopback mode and changing between them, see “Changing LivePayment 
operating modes” on page 28.



Appendix B, Netscape-supported bank card acquirers 251

First Data Corporation (FDC)

Getting information about your certificate

As part of the application process with FDC, you need to know the issuer infor-
mation and the serial number of your certificate. You can find this information 
by clicking the Examine a Certificate link on the Netscape LivePayment page. 
For more information, see “Examining a certificate” on page 45.

Certifying your application

Before going live (entering production mode) with your LivePayment appli-
cation, you must contact FDC to get it certified. Certification assures that your 
application meets credit card processing standards. You need your application 
certified under the following circumstances:

• If you create an application from scratch (without using the Starter Appli-
cation Set). 

• If you modify the Starter Application Set (LPStart and LPAdmin) by changing 
the .js files in the readonly_lib directory.

If you modified the Starter Application Set without modifying the .js files, your 
application will not need to go through the whole certification process. 
Netscape or FDC will verify that your .js files have not been modified.

In general, the certification process checks that:

• The data forwarded to the acquirer is the correct data in the correct format.

• The application can correctly handle the information received from the 
acquirer. 

• Standard business practice rules are not violated.

The certification is handled on a one-on-one basis by FDC. For certification, 
contact FDC. 



First Data Corporation (FDC)

252   Netscape LivePayment Developer’s Handbook



Index   253

Index

 

A

 

acquirer
defined

 

16

 

establish service with

 

27

 

First Data Corporation

 

249

 

information provided by

 

27

 

, 

 

64

 

Netscape supported

 

249

 

response time

 

242

 

address verification service result

 

64

 

, 

 

178

 

administer LivePayment

 

45

 

administer LiveWire

 

47

 

amount property
PayEvent object

 

173

 

Slip object

 

174

 

appendMerchantOrderDesc
method

 

174

 

appendOrderDesc method

 

175

 

application
certify

 

251

 

authCode property

 

176

 

authorization code

 

64

 

authorize

 

164

 

business rules

 

55

 

cpcmd

 

214

 

information required for

 

53

 

results

 

64

 

Authorize function

 

84

 

, 

 

114

 

authorize method

 

177

 

AuthToCapturing function

 

115

 

AVS

 

See

 

 address verification service result

avsResp property

 

178

 

B

 

bad method

 

150

 

, 

 

178

 

bank card number
valid

 

241

 

batch
create

 

53

 

for capture

 

59

 

for credit

 

59

 

for settle

 

59

 

number
get

 

58

 

get with cpcmd

 

223

 

settle

 

80

 

, 

 

92

 

state

 

65

 

transaction order

 

60

 

Batch object

 

155

 

, 

 

179

 

properties

 

155

 

batch object

 

87

 

batchNumber property

 

180

 

billingStreet property

 

181

 

billingZip property

 

181

 

C

 

CalcOrderTotal function

 

115

 

calcScore function

 

115

 

Cancel function

 

84

 

, 

 

116

 

capture

 

165

 

business rules

 

56

 

information required for

 

54

 

using batch number

 

59

 

with cpcmd

 

217

 

Capture function

 

84

 

, 

 

92

 

, 

 

116

 

capture method

 

181



254   Netscape LivePayment Developer’s Handbook

card processor
defined 16
error messages 230
log file 245
parameters 33
start 46
stop 47

cardExpirationDate property 182
cardNumber property 182
cardType property 183
CentsToDollarStr function 116
certificate

card processor 38
distinguished name 43
examine 45
file

card processor parameter 34
install 44
request 41
use server 36

certificate authority 38, 42
certify application 251
CheckAVS function 117
clearStatus method 151, 183
common gateway interface (CGI)

defined 16
common name 43
confirm function 117
control file 35
countActiveParams function 117
cpcmd utility

commands 210
overview 210

CreateCreditevent function 118
CreateManualCreditEvent function 118
CreatePayevent function 118
CreateSlip

cpcmd 219

credit 166
business rules 56
information required for 54
using batch number 59
with cpcmd 221

credit card processing
functions 84

Credit function 84, 92, 119
credit method 184
creditCount property 184
cryptography 23
currency property

Batch object 185
Slip object 185

cursor method 85
cursor object 85

D
database

design 57
database object 85
database schema 109
database tables 110
develop

LivePayment application
steps 144

distinguished name 43
doCredit function 119
DollarStrtoCents function 119
Domain Name Service (DNS) 35
dynSelect function 120

E
emitFooter function 120
emitHeader function 120
encode method 160, 186
encryptPasswordFile property 187



Index   255

error messages
card processor 230

error status methods 150
eventID property 187
eventTime property 188
execute method 85

F
failOnAVS function 121
FIFO file 35
First Data Corporation

establishing service with 249
function

livePaymentVersion 192
registerLivePayment 146, 199
registerNativeFunction 146, 199

G
gateway

connection test 46
defined 16

GenerateMerchantReference function 121
GenerateSlip function 89, 121
GetCardType function 122
GetCurrentBatch function 84, 122
getCurrentBatch method 188
getDER method 189
GetItemProperties function 123
GetNextBatchID function 123
GetNextEventID function 123
GetNextPurchaseID function 123
GetNextSlipID function 124
getStatusCode method 150, 190
getStatusMessage method 151, 190
getTitleString function 124
good method 150, 191

H
host name 34

I
idempotent

defined 68
transactions 68

initMerchantOrderDesc method 191
isAmericanExpress function 124
isAmEx function 124
isAnyCard function 125
isBlank function 125
IsCardMatch function 125
isCarteBlanche function 126
isCB function 126
isCC function 126
isDC function 126
IsDiners function 126
isDinersClub function 126
isDiscover function 126
isenRoute function 127
IsExistingPurchaseID function 127
isJCB function 127
isMasterCard function 127
isMastercard function 127
isMC function 127
isNum function 128
isValidDay function 128
isValidPrice function 128
isValidPurchaseid function 128
isValidYear function 129
isValidZip function 129
isVISA function 129
isVisa function 129
ItemObject function 129



256   Netscape LivePayment Developer’s Handbook

J
JavaScript

defined 15
embed in HTML 146

K
key

private 38
public 38

key pair file
card processor parameter 34
generate 38
location 42
password 39, 43

change 40

L
LivePayment objects 86
livePaymentVersion function 192
LiveWire

application manager 48
database connectivity tools 21
defined 14

log file 35
card processor 245

loopback mode
See mode, loopback

LPAuthOnly sample application 167

M
makeValidMerchantReference function 130
MatchShipToBill function 130
Merchant object 87, 152, 192

properties 153
merchantNumber property 193
merchantReference property

Batch object 194
PayEvent object 194
Slip object 195

method
appendMerchantOrderDesc 174
appendOrderDesc 175
authorize 177
bad 150, 178
capture 181
clearStatus 151, 183
credit 184
encode 160, 186
error status 150
getCurrentBatch 188
getDER 189
getStatusCode 150, 190
getStatusMessage 151, 190
good 150, 191
initMerchantOrderDesc 191
Processor object 154
settleBatch 201
Slip object 159

mode
loopback

change to test 29
defined 28
start 29

operating, defined 28
production

defined 28
start 30, 31

test
change to production 30
defined 28
start 29

N
name property

Merchant object 195
Processor object 196



Index   257

O
object

Batch 155, 179
create 148
Merchant 152, 192
PayEvent 162, 196
Processor 154, 197
Slip 157, 202
Terminal 152, 204

operating system shell 15

P
parameters

card processor
configure 33

default values from 149, 211
LivePayment

configure 32
PayEvent object 162, 196
PayEvent object properties 162
payment state 65
paySvcData property 197
port number 34
preparetoSettle function 131
PrintAVSError function 131
PrintBatchItem function 131
PrintError function 132
PrintFmtError function 132
PrintReceipt function 132
PrintReceiptItem function 133
PrintSettledBatch function 133
PrintTrans function 133
PrintTransItem function 134
private key 38
Processor object 87, 154, 197

methods 154
properties 154

project object 86

property
amount

PayEvent 173
Slip 174

authcode 176
avsResp 178
Batch object 155
batchNumber 180
billingStreet 181
billingZip 181
cardExpirationDate 182
cardNumber 182
cardType 183
creditCount 184
currency

Batch 185
Slip 185

encryptPasswordFile 187
eventID 187
eventTime 188
Merchant object 153
merchantNumber 193
merchantReference

Batch 194
PayEvent 194
Slip 195

name
Merchant 195
Processor 196

PayEvent object 162
paySvcData 197
Processor object 154
purchaseRequestTime 198
salesCount 200
Slip object 157
Terminal object 153
terminalNumber 205
totalCreditAmount 205
totalSalesAmount 206
use 148

public key 38
purchase

authorize 88
purchaseRequestTime property 198



258   Netscape LivePayment Developer’s Handbook

Q
Query function 134
QueryCleanup function 134

R
register LivePayment objects 146
registerLivePayment function 146, 199
registerNativeFunction function 146, 199
RemoveAlpha function 134
request object 86
response time from acquirer 242

S
SaleObject function 135
salesCount property 200
sample application

LPAuthOnly 167
SaveCreditevent function 136
SavePayevent function 136
server

administration 16
HTTP 15

settle 166
business rules 57
information required for 55
using batch number 59
with cpcmd 223

SettleBatch function 84, 92, 136
settleBatch method 201
shell

operating system 15
slip

create 52
create with cpcmd 219
encode 89, 160
generate 88

Slip object 87, 157, 202
methods 159
properties 157

source ID 34
starter application

administrate 77
batch states 138
configure 76
directory structure 104
functions 114
HTML pages 105
libraries 108
modify 83
modifying 96
prerequisites 76
transaction states 138

StateList function 137

T
technical support 247
telnet 245
Terminal object 88, 152, 204

properties 153
terminalNumber property 205
totalCreditAmount property 205
totalSalesAmount property 206
TraceFile

cpcmd 213
TraceLevel

cpcmd 213
traceroute 244
transaction

authorize 90
cancel 78
capture 78, 91
credit 92

transactions
view 78



Index   259

U
URL

LivePayment 31
utility

defined 15

V
VerifyPurchaseData function 137
version

finding LivePayment 152
viewTransaction function 137



260   Netscape LivePayment Developer’s Handbook


	Developer’s Handbook
	Before you begin
	Audience
	Organization
	Conventions

	LivePayment basics
	Introducing Netscape LivePayment
	What is Netscape LivePayment?
	Processing credit cards with Netscape LivePayment
	Developing a payment processing application
	Modifying the Starter Application Set
	Creating your own application using LiveWire
	Creating your own application using cpcmd
	Certifying your application

	Data storage
	Applying for service from your bank
	Security
	Further reading on security


	Setting up Netscape LivePayment
	Post-installation procedures
	Setting up a relationship with a bank card acquire...
	Changing LivePayment operating modes
	Starting up in loopback mode
	Changing from loopback mode to test mode
	Changing from test mode to production mode

	Accessing the Netscape LivePayment page
	Configuring the LivePayment parameters
	Configuring the card processor parameters
	Domain Name Service (DNS) aliasing

	Configuring security
	Using the server’s certificate
	Using a separate certificate for LivePayment

	Administering Netscape LivePayment
	Starting the card processor
	Checking the gateway connection
	Stopping the card processor

	Administering LiveWire
	Accessing the Server Selector

	Payment application concepts
	Credit card transactions
	Creating a slip
	Authorizing a purchase
	Starting a new batch
	Capturing a purchase
	Issuing credit for a purchase
	Settling a batch

	Business rules for credit card applications
	Authorize
	Capture
	Credit
	Settle

	Designing your database
	Using batches
	Using batches in an application
	Order of transactions

	Storing Information from the acquirer
	Results of authorize
	Batch number

	Maintaining the payment and batch states
	Why is the state needed?
	Keeping track of the payment states
	Keeping track of the batch states
	Idempotent transactions



	Using the LivePayment Starter Application Set
	Running the Starter Application Set
	The application files
	Before you begin
	Prerequisites
	Configuration

	Starting the application
	Making a purchase
	Using the administration interface
	Viewing uncaptured authorizations
	Viewing transactions in the current batch
	Cancelling a transaction
	Crediting a transaction by batch
	Manually crediting a transaction
	Viewing previous transactions by batch
	Settling the current batch
	Searching for a transaction


	Reviewing the application code
	The credit card processing functions
	The LiveWire objects
	The database object
	The project object
	The request object

	The LivePayment objects
	The Merchant object
	The Processor object
	The Slip object
	The Batch object
	The Terminal object

	Authorizing a purchase
	Generating a slip
	Encoding a slip
	Authorizing a transaction

	Capturing a transaction
	Crediting a transaction
	Settling a batch

	Modifying the Starter Application Set
	Preparing to modify LPStart
	Modifying the Starter Application Set
	Modifying LPStart


	Netscape LivePayment Starter Application Set Refer...
	Directory Structure
	LPStart HTML pages
	LPAdmin HTML pages
	LPAdmin Transaction Libraries
	LPAdmin Merchant Libraries
	Database schema
	Database tables
	Functions
	Batch states
	Transaction states


	Creating a LivePayment application from the ground...
	Using the LivePayment objects
	LivePayment objects overview
	Developing with LivePayment
	Embedding LivePayment JavaScript in HTML
	Registering LivePayment objects in LiveWire
	Creating instances of LivePayment objects
	Using LivePayment properties
	Using the default values from the LivePayment conf...
	Using error status methods
	Getting the LivePayment version in LiveWire

	Using LivePayment objects to process payments
	Creating Merchant and Terminal objects
	Creating a Processor object
	Creating a Batch object
	Creating a Slip object
	The order description and the merchant order descr...
	Encoding and decoding a Slip object
	Creating a PayEvent object
	Authorizing a payment
	Capturing a payment
	Crediting an account
	Settling payments

	Using the LPAuthOnly sample application
	The LPAuthOnly files
	Running LPAuthOnly
	The sample code


	LivePayment object reference

	Creating an application using the cpcmd utility
	Using the cpcmd utility
	Overview of cpcmd
	Transaction flow
	Default configuration
	Data storage
	Return values, output, and errors

	Using TraceFile and TraceLevel
	Command reference
	Authorize
	Capture
	CreateSlip
	Credit
	GetCurrentBatch
	SettleBatch



	Appendices
	Troubleshooting LivePayment
	Troubleshooting overview
	Resolving card processor error messages
	Table notes

	Verifying the configuration
	Testing the gateway connection
	Using traceroute and telnet
	Using traceroute
	Using telnet

	Checking the card processor log file
	Technical support

	Netscape-supported bank card acquirers
	First Data Corporation (FDC)
	Establishing a credit card business agreement
	Obtaining test processing parameters
	Getting information about your certificate
	Certifying your application




