Ués

January 1978

EM?E&ME?’/Vay‘.e—éc:aL Saectitn X4 2,1
\

SPECIFICATION OF INTERNETWORK
TRANSMISSION CONTROL PROGRAM

TCP

Version 3

Vinton G. Cerf

Advanced Research Projects Agency

Jonathan B. Postel

. Information Sciences Institute

January 1978

Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, California 90291

(213) 822-1511

INFORHATION SCIEMCES INSTITUTE

UNIVERSITY OF SOUTHERN CALIFORMIA /% /;



f""'\.

January 1978
TCP-3 Specification
Table Of Contenis

TABLE OF CONTENTS

Prel‘rac&--..........f+......*............pageiii
e T L M e |
2. The TCP InterfacetodlhaUsar 4 4+ i « 4 ¢ v s s s s a5 s s s o 4 s s-n o« page B
2.1 The TCP as a post office of L e e, IS OREE A eV mareen, B S 8 nape 05

) 2-2 SDEHEiS ﬂl'ld ﬂddeSSinE " L] - [ ] [ [ ] [ - [] » [} [ - " [ - [ L] ] [ L ] L ] [ ] DEE.B E

'bq

2+3 Wh?rt 15 a LE“EJ"? E B B ® ¥ & ® # ® & & @& & #F ® ® & & & & ® ¥ ¥ B B W Fagﬂ

2.4 TCP user commands T e e e T e e Y oD T,
2'4!1 Open - [ ] [ ] - - - " " L] L] L] [ L] L] L] - - - - - - - L] - L] w L ] L] L 3 page E‘
e el L e it e il ot PR T e e e L o
A RECEIVE. - o e e e e e N e o oo page 10
.21"1»& CIOEE = 8 ® = ® F 4 . ¥ 4 & 8 ® . » . % 0w I;‘-EIEE 11
214.5 Urg-E!nt - - - - - [] " L] ] L] - L L] L] - L paEE 12
2.4.6 Stalus « & & & & @ " . o ow ® 8 8 % B 8 & B @ page 12
2-4-? nb“r[ - L] L] L L] L] ] . [ ] [ ] w L ] # L] L] . L3 L] L] - L] L] - L] L] L] - - page 13

215 TCP l'ﬂ USEI’ ﬂ"lEEﬁaE!ﬁE » - [ ] . - [] " L] '] ] L] » - [ » [ » L ] [ [ ] L] L ] . PEEE is
T e 1 T B o L e e e e e (i e R e P I page 14
25.2Message formal " o . o, 0 4 0 e s e 5 e 0 s 0w e a5 s e page 14
R VNt EOanE. e v von b T e s e page 15

5..Hfghar T R el bt o e P b ol el i e o i ) page 17

e Lt o [ T P G e e i e e S g o Gin o i g o e e e o o page 17

3-2 WE.‘" hﬂﬂ‘wﬂ 5DCF'-Et5 L] L] [ ] ] [ L] - L] L] - - L] - * - L L] L] - L] L] - L] - page 1?

3;3 HEEBI’THEEHG"I Prﬂifﬂ:ﬂ| L L] - [] 1] - [ " [ ] [ EF L] L] L] L . L] Ll L] L - - page 1?

Cerf & Postel [Page i]



TCP-3 Specification
Table Of Contenis

Q. TGP DesIgn o« 5 5 5w a St e N o o] e
. 4+1 Iﬂ'rndu:tiﬂn‘ L] L] L] L] L] L] [ ] L] L] L ] L] L] L] L] L] [ ) - - L

4.2 Connection management .

4.2.1 Initial sequence number sele:tmn S Py T e
4,2.2 Establishing a connection oM OoioomMio oD o a0
423 Half—ﬂpen connaclions B o8 s % F B O & B OB B 8 2 B @
4.2.4 Knowing When to Keep Quiet e e e o
8.2.5 Closing a connection oD s e e mm el el e
4.2.6 End of Letter Sequence Nurnber Adjustments " e
4.2.7 The Communication of Urgent Information AR O a0 o Ol
4.2.8 The Possibility of Less than Reliable Communication e
4.2.9 TCP Connection State Transitions AR e e

4.3 TCP data structures e e
4.3.1 Internetwork Packet Format
4.3.2 TCP Packet Format s e
4.3.3 Transmission Control Block

- = o =
- = m -
" o & -
« = = =
- ® ® =
L " w
. ® @ L]
® ® & =
LI T T
- -
- - - L
-

4.4 Siructure Df the TGP & @& ® & w & B & & B & ¥ ® B B W
4.4.1 Introduction T RN 0O adnto oo ofgfnfo "o oo
4.4.2 Input packet handler T e o T T e R e e ol
443 Reassembler . « « + & &« & & & & & & & s & & % % e
ﬂ.ILI-'I PEE'I'QEHZEF T T T T T
4,45 OQutput packel handler 05D ORnSD DGO T O 0N D . D

4.4.6 Retransmitter T
4.5 Buffer and window allocalion  + « « & 4 & = & = & » s & s
q-E-l |Hfrﬂductiﬂh « & ¥ ® % B B W @ ® W W W B B B B O ®
45.2 The send side T e e 2o R e
453 The receive side & + « « &+ & &« & 5 » soe e s e s

BlbﬂngraphyI-I-I-'I-I-I'I'Inrll'l'l!'ll!!'!Ii'i"Il

[Page ii]

- L] L] - L] - - .

- - - -
- - - -

January 1978

- L3 L -

- - - -

- page 21
. page 21
. page 25
. page 25
O page 25
. page 29
. page 32
. page 33
o page 34
. page 89
. pepe 35
. page 35
A pege 56
. page 56
. page B9
. page 63
. page 65
. page 65
. page 67
. page 68
. page 70
. page 71
. page 71
. page 71
. page 71
. page 72
. page 72
. page 75

Carf & Postel



-

January 1978
TCP-3 Specification

Preface

PREFACE

This document describes the functions to be perforrmed by the internetwork Transmission
Control Program (TCP} and its interface to programs or users that require its services. There
have been three previous TCP specifications: The first [CD574] defined version 1 of TCP. A
second [PGR76a] was written for the Defense Communications Agency in connection with its
AUTODIN Il project. The third [Cerf 77] defined version 2, for use in the ARPA internetwork
research projects. :

The AUTODIN Il version differed from the original version in the following ways:

Specification of a resynthrunizaliuﬁ machanism was included, and fields for securilty and
priority, which were known requirements of AUTODIN Il, were added.

The internet version 2 differed from the original version in the following ways:

A different resynchronization procedure was introduced; an "option” field was defined for
the TCP header to accommodate not only security and priority but other special features
" concerned with, for example, packet speech services, dizznostic timestamping, and so on.

This version eliminated all error messages but for RESET and thus simplified the header
format. There are still many local errors which can be reported to the user, but none of
these need cross the network(s) between TCP’.

Connection closing was slightly more elaborate in Version 2 than in version 1 because the
"FIN signals had to be acknowledged. Furthermore, the INT and FIN facilities no longer
caused flushing of the data stream. (A separate "flush” facility was tested, but eliminated,
in the end.) Dealing with flow-control windows that have gone to zero was a new feature of
version 2, end, finally, the reassembly of fragmenis into segments was more carefully

specified.

In version 3 specified in this document, TCP has further evolved. The primary changes from
version 2 are;

The resynchronization mechanismhas been eliminated in favor of a quiet period on
initialization of the TCP,

Buffer management and lciters are more tightly coupled by the coupling of the end of letter
flag to a receive buffer size.

The interrupt signal has been eliminated in favor of an urgent pointer.

A further separation of the internet and TCP specific information in the packet format has
been achieved, with provision for variable length addresses in the internet header.

Cerf & Postel : ) [Page iii]



January 1978
TCP-3 Specification

Proface

The evolulion from TCP version 2 to version 3 was influenced by many people, but special
mention should be made of the work at MIT's Laboratory for Computer Science on the Data
Stream Protocol (DSP) by Dave Clark and Dave Reed. Many of the specific changes introduced
in version 3 were first described by Ray Tomlinson of BBN [Tomlinson77].

Although the list of participants in the TCP work is very long (see [CEHKKS77] - the final TCP
project report), special acknowledgements are due to R. Kahn, R. Tomlinson, Y. Dalal, R. Karp
end C. Sunshine for their active participation in the design of TCP.

This edition of the specification benefited from the comments of the following reviewers:
Michael Padlipsky, Carl Sunshine, John Day, Gary Grossman, and Ray Tomlinsan.

[Page iv] Cerf & Postel



January 1978

Transmission Conirol Protocol

Version 3

1. INTRODUCTION

The Transmission Control Protocol (TCP) is intended for use as a highly reliable host-to-host
protocol between hosts in packet-switched computer communication networks, and especially in
interconnected systems of such networks. This section introduces some of the terminology
used in the remainder of the document and some of the assumptions made in the design of the
protocol.

Several basic assumptions are made about process to process communication and these are
listed here without further justification. The interested reader is referred to [CK74,
Tomlinson74, Belsnes74, Dalal74, Dalal75, Sunshine76a, CEHKKS77] for further discussion.
HOSTs are computers attached to a network, and from the communication network’s point of
view are the sources and destinations of messages. PROCESSES are viewed as the active
elements of all host computers In a network (in accordance with the fairly common definition of
a process as a program in execution). Even terminals and files or other 1/O media ere viewed
as communicating through the use of protesses. Thus, all network communication is viewed as
inter-process communication. |

Since a process may need to distinguish among several communication streams between itself
and another process [or processes], we imagine that each process may have a number of
PORTs through which it communicales with the ports of other processes.

Since port names are selected Independently by each operating system, TCP, or user, they may
not be unique. To provide for unique names at each TCP, we concatenate an internet ADDRESS
specific to the TCP level with a port name to create 8 SOCKET name which will be unigque
throughout all networks connected together.

For example:
Network = ARPANET (number 12),
Host = ISI-TENEXA (imp 22, host 1),
Port = FTP-Server (port 3);

or
£PBn1810-00018118-6BB0BEC3aBBBRER1
alsfalslalafalala el el talahalaahetalatetatal s s D R AN

Cerf & Postel ' [Page 1]

——



January 1878

TCP-3 Specificalion
Infreduction

A pair of socksts form a CONNECTION which can be used to carry data in either direction (ie.
“full duplex”). The connection is uniquely identified by the <local socket, foreign socket>
address pair, and the same local socket name can participats in multiple connections to
different foreign sockets {see section 2.2). :

Processes exchange finite length LETTERS as a way of communicating; thus, letter boundaries
might be significant in some process-to-process communications. However, the length of a
letter may be such that it must be broken into SEGMENTS before It can be transmitled to Its
destination. We assume that the segments will normally be reassembled Into a letter before
being passed to the receiving process. A segment may contain all or a part of a letter, but that
a segment never contains parts of more than one letter.

Furthermore, there Is no restriction on the length of a letter. A connection might be formed to
send a single long letter (a stream of bytes, In effect). In fact, processes can communicate via
TCP without ever marking the end of a letter, but we think this is atypical of most anticipated
use. :

There Is, however, a coupling between letters as transmitted and the use of buffers of data that
cross the TCP/user interface. Each time an end of letter (EQL) signal is associated with data
placed into the receiving user’s buffer, the buffer is returned to the user for processing even if
the buffer is not filled.

We specifically assume that segments are transmitted from Host to Host through means of a
PACKET SWITCHING NETWORK (PSN) [RW70, Pouzin73]. This assumption is probably
. unnecessary, since a circuit switched network; or a hybrid combination of the two, could also
be used, but for concreteness, we explicitly assume that the hosts are connected to one or
mora PACKET SWITCHES [PS] of a PSN [HKOCW70, Pouzin74, SW711

Processes make use of the TCP by handing it letters (or buffers filled with parts of a letter).
The TCP breaks these into segments, if necessary, and then embeds each segment in an
INTERNETWORK PACKET. Each internetwork packet is in turn embedded in a LOCAL PACKET
suitable for transmission from the host to one of its serving PSs. The packet switches may
perform further formatting, fragmentation, or other operations to achieve the delivery of the
local packet to the destination Host. :

The term LOCAL PACKET is used generically here to mean the formatted bit string exchanged
between a host and a packet switch. The format of bit strings exchanged between the packet
switches in a PSN will generally not be of concern to us. If an internetwork packet is destined
for a TCP in a foreign PSN, the packet is routed to a gateway which connects the originating
PSN with an intermediate PSN or with the destination PSN. Routing of internetwork packets to
the gateway may be the responsibility of the source TCP or the local PSN, depending upon the

PSN services available.

One model of TGP operation s to imagine that there is a basic gateway associated with each

[Page 2] ; Cerf & Postel



_.-“'_-'\
1

January 1978
TCP-3 Specification

Introduction

the gateway may be the responsibility of the source TC? or the local PSN, depending upon the
PSM services available.

One model of TCP operation is to imagine that there is a basic gateway associated with each
TCP which provides an interface to the local network. This basic galeway performs routing and
packet reformatting or embedding, and may also implement congestion and error control
beiween the TCP and gateways at or intermediate to the destination TCP.

Al a galewey belween nelworks, the internetwork packet is "unwrapped” from ils local packet
format and examined to determine through which network the internetwork packet should
travel next. The internetwork packet is then "wrapped” in a local packet format suitable to the
next network and passed on to-a new packet switch.

A gateway is permitted to break up a segment carried by an internetwork packet into smaller
FRAGMENTS if this Is necessary for transmission throuvgh the next network. To do this, the
gateway produces & sel of internetwork packels, each carrying a fragment. Fragmenis may be
broken into smaller ones at intermediate gateways. The packet format is designed so that the
destination TCP can reassemble fragments into segmenis and verify the end-to-end checksum
associated with the segment. Segments, of course, can be reassembled into letters.

Note that the design of fragmentation procedures is still an active area and this function
may in the future be removed from TCP's concerns and become entirely a

gateway-to-gateway Issue.

The TCP is responsible for regulating the flow of internetwork packets to and from the
processes it serves, as a way of preventing its host from becoming saturated or overloaded
with traffic. The TCP is also responsible for retransmitling unacknowledged packels, and for
detecting duplicates. A consequence of this error detection/retransmission scheme is that the
order of letters received on a given connection can also be maintained [CK74,Sunshine75]
To perform these functions, the TCP opens and closes connections between ports as described
in section 4.2,

Cerf & Postel ' [Page 3]



January 1978

TCP-3 Specification
The TCP Interface To Tha User

[Page 4] "~ Cerf & Postel



January 1978
TCP-3 Specification
The TCP intarface To The User

2. THE TCP INTERFACE TO THE USER

The functional description of user commands to the TCP is, at best, fictional, since every
operating system will have different facilities. Consequently, we must warn readers that various
TCP implementations may have ditferent user interfaces. These will all be TCP's, as long as
control messages are properly interpreted or emitted, as required. In spite of this caveat, it
appears useful to have at least one concrete view of a user interface to aid In thinking about
TCP-derived services.

2.1 The TCP as a Post Office

The TCP acts in many ways like a postal service since it provides a way for processes to
exchange letters with each other. It sometimes happens that a process may offer some
service, but not know in advance what its correspondents’ addresses are. The analogy can
be drawn with a mail order house which opens a post office box which can accept mail from
any source. Unlike the post box, however, once a letter from a particular correspondent
arrives, the resulting connection becomes specific to the correspondents until the
correspondents declare otherwise--thus making the TCP more like a telephone service.

~ Without this particularization, the TCP could not perform its flow control, sequencing,
duplicate detection, end-to-end acknowledgement, and error control services.

2.2 Sockets and Addressing

We have borrowed the term SOCKET from the ARPANET terminclogy [CCC70, DCA76]) In
general, a socket ls the concatenation of. an internetwork ADDRESS and a PORT identifier.
A CONNECTION is fully specified by the pair of SOCKETS at each end since the same local
socket name may participate in many connections to different foreign sockets.

Once the conneclion is specified in the OPEM command (see section 2.4.2), the TCP
supplies a (short) local connection name by which the user refers to the connection in
.subsequent commands. As will be seen, this facilitates using connections with initially
unspecified foreign sockets.

TCP's are free to associate ports with processes however they choose. However, several
basic concepts seem necessary in any implementation. There must be well known sockels
which the TCP associates only with the “appropriste” processes by some means. We
envision that processes may ‘"own" sockets, and that processes can only initiate
connections on the sockets they own. {Means for implementing ownership is a local issue,
but we envision a Request Port user command, or 2 method of uniquely allocating a group
of ports to a given process, e.. by associating the high order bits of a port ‘name with 2

given process.)

Once iniliated, a connection may be passed to another process that does not own the local
socket (e.g. from "logger" to service process). Strictly speaking this is a reconnection issue

Cerf & Postel [Page 5]



January 1978

TCP-3 Specification
The TCP Interface To The User

which might be more elegantly handled by a general reconnection protocol as discussed in
section 3.3. To simplify passing a connection within a single TCP, however, such "invisible"
switches may be allowed, as in TENEX systems.

Of course, each connection is assoclated with exactly one process, and any attempt to
reference that connection by another process should be treated as an error by the TCP.
This prevents another process from stealing data from or inserting data into another
process’ data stream, and also prevents masquerading, spoofing, or other forms of.
malicious mischief {given a correct impiementation of TCP in a protective operating system
environment).

A connection is ‘initialed" by the rendezvous of an arriving internetwork packet and a
waiting Transmission Control Block (TCB) created by a user OPEN, SEND, URGENT, or
RECEIVE command (see section 2.4). The matching of local and foreign socket identifiers
determines when a successful conneclion has been initiated. The connection becomes
"established" when sequence numbers have been synchronized in both directions as

described in section 4.2.2.

It is possible to specify a socket only partially by setting the PORT identifier to zero or
setting both the TCP and PORT identifiers to zero. A socket of all zero is called
UNSPECIFIED. The purpose behind unspecified sockets is to provide a sort of "general
delivery” facility (useful for processes offering services on "well known" sockets]).

There are bounds on the degree of unspecificity of socket identifiers. TCB's must have fully
- specified local sockets, although the foreign socket may be fully or partly unspecified.
Arriving packels must have fully specified sockets.

We employ the following notation:
x.y.z = fully specified socket with x=net, y=TCP, z=port
x.y.u = as above, but unspecified port
¥.UuU = as above, but unspecified TCP and porl
uv.uu = complelely unspecified
with respect to implementation, u = 0 [zero]

We illustrate the principles of matching by giving all cases of incoming packets which match
with existing TCB's. Generally, both the local socket field of the TCB and the destination
sockel field of the arriving packet must match, and the foreign field of the TCB and the

source socket field of the arriving packet must match.

[Page 6] ' Cerf & Postel



January 1978
TCP-3 Specification
Tha TCP Interface To The User

TCB-local TCB-foreign Packet-source Pac<et-destination

(a) a.b.c e.f.g e.f.g a.b.c
(b) a.b.c e.f.u e.f.g a.b.c
{c) a.b.c E.U.U e.f.g a.b.c
(d) a.b.c THTAT e.f.g a.b.c

There are no other legal combinations of socket identifiers which match. Case {(d} is typical
of the ARPANET well known socket idea in which the well known socket (ab.c) LISTENS for
a connection from any (uu.u) socket. Cases (b) and (c) can be used to restrict matching to
a particular TCP or net. More elaborate masking facilities could be implemented without
adverse effects, so this matching facility could be considered the minimum acceptable for
TCP operation. :

2.3 What is a Letter?

A letter is a sequence of one or more successive octats (8-bit bytes) on a TCP connection.
The beginning of a letter is marked by a BOL control flag in a packet. The end of a letter is
marked by the appearance of an EOL control flag in a packet. A letter is the minimum unit
of information which must be passed from a receiving TCP to a receiving process. A TCP
may pass less information to the receiving program, or it may pass more, but when a TCP
has & complete letter it must not wait for more data from the remole process before
passing the letter to the receiving process if the receiving process is ready to accept it.

Generally, the locations of letter boundaries are not passed to the receiving program. The
exceplion is for non-reliable transmission (see section 4.2.8). In this case, when a section
of data Is missing, the data which follows must either begin on a letter boundary or contain
an indication that the data does not begin on a letter boundary.

The sequence number of the first octet of data in any letters on a given connection is always
equal to zero, modulo the receive buffer size. That is, whenever an EOL Is transmitted, the
sender advances his send sequence number by an amount (in the range 0 to buffersize=-1)
sufficient to consume all the unused space in the receiver’s buffer. The amount of space
consumed in this fashion is accounted for in the flow control mechanism in the same way as
space s consumend by real dala (see section 45) The size of the receive buifer is
communicated between the TCPs in the connection estzblishing exchange.

The EOL interpretation permits the receiving TCP o discard letter boundary information.
Higher level protocols are required to provide their own mechanism for parsing the data
stream and cannol depend on the EOL mechanism. ECL ailso has the property that it
consumes all the unused space in a buffer {(as specified in the buffer size option).

Cerf & Postel : [Page 7]



January 1978

TCP-3 Specification
Tha TCP Intarfzce To The User

2.4 TCP User Commands

The following seclions functionally characterize a USER/TCP interface. The notation used is
similar to most procedure or function calls in high level languages, but this usage Is not
meant to rule out trap type service calls [e.g. SVC's, UUD's, EMT’s,...].

The user commands described below specify the basic functions the TCP will perform io
support interprocess communication. Individual implementations should define their own
exact format, and may provide combinations or subsets of the basic functions in single calls.
In particular, some implementations may wish to automalically OPEN a connection on the
first SEND, RECEIVE, or URGENT issued by the user for a given connection.

In providing interprocess communication facilities, the TCP must not enly accept commands,
but must also return information to the processes it serves. The latter consists of:

(a) general information about a connection [e.g., interrupts, remote close, binding of
unspecified foreign socket]

{b) replies to specific user commands indicating succcess or various types of failure.

Although the means for signalling user processes and the exact format of replies will vary
from one implementation to another, it would promote common undersianding and testing if
a common set of codes were adopted. Such a set of event codes is described in section 2.5,

- 2.4.1 Open
Format: OPEN (local port, foreign socket [, buffer size] [, timeout))

We assume that the local TCP is aware of the identity of the processes it serves and will
check the authority of the process to use the connection specified. Depending upon the
implementation of the TCP, the source network and TCP identifiers will either be supplied
by the TCP or by the processes that serve it [e.g. the program which interfaces the TCP
to its packetl switch or the packet switch itself]). These considerations are the result of
concern about security, to the extent that no TCP be able to masquerade as another one,
and so on. Similarly, no process can masquerade as another without the collusion of the
TCP.

It no foreign socket is specified {i.e. the foreign socket parameter is 0), then this
constititutes a LISTENING local socket which can accept communication from any foreign
sockel. Provision Is also made for partial specification of foreign sockets as described in

section 2.2,

If the specified connection is already OPEN, an error is returned, otherwise a full-duplex
transmission control block (TCB) Is created and partially filled In with data from the

[Page 8] Cerf & Postel



oy

T

January 1978

TCP-3 Specification
The TCP Inlarface To Tha User

OPEN command parameters. The TCB format is described in more detail in section
432, i

No network traffic need be generated by the OPEM command. The first SEND or
URGENT by the local user or the foreign user will typically cause the TCP o synchronize
(i.e. establish) the connection, although synchronization could be immediately initiated on
non-listaning opens.

The buffer size, if present, indicates that the caller will always receive data from the
connection in that size of buffers.

The timeout, if present, permits the caller to set up a timeout for all buffers transmitied
on the connection. If a buffer is nol successfully delivered to the destination within the
timeout period, the TCP will abort the connection. The present global default is 30
seconds. The buffer retransmission rate may vary, and is the responsibility of the TCP
and not the user. Most likely, it will be related to the measured time for responses from
the remola TCP.

Depending on the TCP implementation, either a lacal connection name will be returned to
the user by the TCP, or the user will specify this local connection name (in which case
another parameter is needed in the calll, The local connection name can then be used as
a short hand term for the connection defined by the <local socket, foreign socket> pair.

Responses from the TCP which may occur as a rzsult of this call are detailed in sections

25 and 4.2.9.

2.4.2 Send

Format: SEND{local connection name, buffer address, byte count, EOL flag [, timeout]}

This call causes the data contained in the indicaled user buffer to be sent on the
indicaled connection. If the conneclion has not bean opened, the SEND is considered an
error. Some implementations may allow users to SEND first, in which case an asutomatic
OPEN would be done. If the calling process is not authorized to use this connection, an

error is returned.

If the EOL flag is set, the data is the End Of a Letter, and the EOL bit will be set in the
last internetwork packet created from the buffer {see section 4.3.2 - TCP packet format).
If the EOL flag is not set, subsequent SENDs will appear to be part of the same letter.

If no foreign socket was specified in the OPEN, but the connection is established (e.g.
because & LISTENing connection has become specific due to a foreign packet arriving for
the local socket]) then the designated bufier is sent to the implied foreign sockel. In

Cerf & Postel ' - [Page 9]



January 1978

TCP-3 Specification
The TCP Interface To Tha User

general, users who make use of OPEN with an unspecified foreign socket can make use
of SEND without ever explicitly knowing the foreign socket address.

However, If a SEND is attempted before the foreign socket becomes specified, an error
will be returned. Users can use the STATUS call to determine the status of the
connection. In some implementations the TCP may nolify the user when an unspecified
socket is bound.

If a timeout is specified, then the current limeoul for this connection is changed to the
new one,

In the simplest implementation, SEND would not return control to the sending process
until either the transmission was complete or the timeout had been exceeded. However,
“this simple method is both highly subject to deadlocks (for example, both sides of the
connection might try to do SENDs before doing any RECEIVEs) and offers poor
performance, so it is nol recommended. A more sophisticated implementation would
return immediately fo allow the process to run concurrently with network 1f0, and,
furthermore, to allow multiple SENDs to -be in progress. Multiple SENDs are served in
first come, first served order, so the TCP will queue those it cannot service immediately.

Respanses from the TCP which may occur as a resull of this call are detailed in sections
25 and 4.2.9.

We have implicitly assumed an asynchronous user interface in which a SEND later elicits
some kind of SIGNAL or pseudo-interrupt from the serving TCP. An alternative is to
retlurn a response immediately. For instance, SENDs might return immediate local
acknowledgment, even if the packet sent had not been acknowledged by the distant TCP.
We could optimistically assume eventual success. |f we are wrong, the connection will
close, anyway, due to the timeout. In implementations of this kind (synchronous), there
will still be some asynchronous signals, but these will deal with the connection itself, and
not with specific packels or letlers.

NOTA BENE: In order for the process to distinguish among error or success indications
for different SENDs, it might be appropriate for the buffer address to be returned along
with the coded response to the SEND request. We will offer an example event code
format in section 2.5, showing the information which should be returned to the calling

process.

[Page 10] Cerf & Postel



January 1978
TCP-3 Specification
The TCP Inlsrface To The User

2.4.3 Receive
Format: RECEIVE (local connection name, buffer addrass, byte count)

This command allocates a receiving buffer associzted with the specified connection. If no
OPEN precedes this command or the calling process is nol authorized to wuse this
connection, an error is returned.

In the simplest implementation, control would not return to the calling program until
either the buffer was filled, or some error occured; bul this scheme is highly subject to
deadlocks (sec section 2.4.2). A more sophisticaied implementation would permit
several RECEIVEs to be oulstanding at once. These would be filled as letters, segments
or fragments arrive. This strategy permits increzsed ihroughput, at the cost of a more
elaborate stheme (possibly asynchronous) to notify the calling program that a letter has
been received or a buffer filled,

If insufficient buffer space is given to reassemble a complele letter, the EOL flag will not
be set In the response to the RECEIVE. The buffer wiil be filled with as much data as it

can hold {see section 2.5.2).

The remaining parts of a partly delivered letter wili be placed in buffers es they are made
available via successive RECEIVES. If a number of RECEIVES are outstanding, they may
be filled with parls of a single long letter or with at mest one letter each. The event codes
associated with each RECEIVE will indicate what is cocntained in the buffer.

If a buffer size was given in the OPEN call, then all buffers presented in RECEIVE calls
must be of exactly that size, or an error indication will be returned.

To distinguish among several outstanding RECEIVES, and to take care of the case that a
letter is smaller than the buffer supplied, the evert code is accompanied by both a buffer
pointer and a byte count indicating the actual length of the letter received.

Responses from the TCP which may occur as a resull of this command are detailed in
sections 2.5 and 4.2.9. :

Alternative implementations of RECEIVE might have ths TCP allocale buffer storage, or
the TCP might share a ring buffer with the user. Variations of this kind will produce
obvious variation in user interface to the TCP,

Carf & Poste! ' [Page 11]



January 1978

TCP-3 Specification
The TCP Interfete To The User

2.4.4 Close
Formatl: CLOSE(local connection name)

This command causes the connection specified to be closed. If the connection is not open
or the calling process is not aulhorized to use this conneclion, an error is returned.
Closing connections is intended to be a graceful operation in the sense that outstanding
SENDs will be transmitled (and retransmitted), as flow control permits, until all have
been serviced. Thus, it should be acceplable to make several SEND calls, followed by a
CLOSE, and expect all the data to be sent to the destination. It should also be clear that
users should continue to RECEIVE on CLOSING connections, since the other side may be
trying to transmit the last of its data. Thus, CLOSE means "I have no more to send” but
does not mean "l will not receive any more." It may happen (if the user level protocol is
not well thought out) that the closing side is unable to get rid of all its data before timing
ouf. In this event, CLOSE turns into ABORT, and the closing TCP gives up.

The user may CLOSE the connection at any time on his own initiative, or In response to
various prompts from the TCP ({(eg., remote close executed, fransmission timeout
exceeded, deslination inaccessible]).

Because closing a connection requires communication with the foreign TCP, connections
may remain in the closing state for a short time. Attempts to reopen the connection
before the TCP replies to the CLOSE command will result in error responses.

Responses from the TCP whichrm'ay occur as a result of this call are detailed in sections
25 and 4.2.5.

2.45 Urgent
Format: URGENT({local connection name)

Special control information is sent to the destination indicating that urgent processing is
appropriate. This facility can be used to simulate "break" signals from terminals or
error or completion codes from 1/0 devices, for example. The semantics of this signal to
the receiving process are unspecified. The receiving TCP will signal the urgent condition
to the receiving process as long as the urgent pointer indicates data preceding the urgent
pointer has not been consumed by the receiving process,

If the connection is nol open or the calling process is not authorized to use this
conneclion, an error is returned.

Responses from the TCP which may occur as a result of this call are detailed in sections
25 and 4.2.9,

[Fage 12] Cerf & Postel



P

oy

January 1978
TCP-3 Specification
The TCP Interface To The User

2.4.6 Status
Format: STATUS({local connection name)

This is an implementation dependent user command and could be excluded without
adverse effect. Information returned would typically come from the TCB (see section
4.3.3) associated with the connection.

. This command returns a dala block containing the following information:

local sockel, foreign socket, local connection name, receive window, send window,
connecltion state, number of buffers awaiting acknowledgement, number of buffers
pending receipt (including parlial ones), receive buffer size, urgent state, and default
transmission timeout.

Depending on the state of the conneclion, on or the implementation itself, some of this
information may not be available or meaningful. If the calling process is not authorized to
use this connection, an error is returned. This prevents unauthorized processes from

gaining Information about & connection.

Responses from the TCP which may occur as a result of this call are detlailed in sections
25 and 4.2.9.

2.4.7 Abort
Format: ABORT (local conneclion name)

This command causes all pending SENDs, URGENTs, and RECEIVES to be aborted, the
TCB to be removed, and a special RESET message to be sent to the TCP on the other
side of the connection. Depending on the implementation, users may receive abort
indications for each oulstanding SEND, RECEIVE, or URGENT, or may simply receive an
ABORT-acknowledgment. The mechanism of resetling a connection is discussed in
sactions 4.2.3 and 4.2.9.

Responses from the TCP which m;a}r occur as a result of this call are detailed in seclions
2.5 and 4.2.9.

Cerf & Postel [Page 13]



January 1978

TCP-3 Specification
Tha TCP Inlarface To The User

25 TCP-to-User Messages
i’.E.l Type Codes

All messages include a type code which identifies the type of user call to which the
message applies. Types are:

B - General message, spontaneously sent to user
1 - Applies to OPEN

2 - Applies to CLOSE

3 - Applies io URGENT

4 - Applies to ABORT

1B - Applies to SEND

28 - Applies to RECEIVE
380 - Applies to STATUS

25.2 Message Formats
All messages include the following three fields:
Type code
Local connection name

Event code

For message types 0-4 (General, Open, Close, Urgent, Abort) only these three fields are
necessary.

For message type 10 (Send) one additional field is necessary:
Buffer address
For message type 20 {(Receive) three additional fields are necessary:

Buffer address
Byte count (counts byles recewed}
End-of-Letter flag

[Page 14] Cerf & Postel



AT,

January 1978
TCP-3 Specification
The TCP Interface To The User

For message lype 30 (Status) addilional data might include:

Local socket, foreign socket

Send window {measures buffer space at foreign TCF)
Receive window (ricasures buffer space at local TCP)
Connection state {see section 4.2.9)

Number of buffers awaiting acknowledgement
Number of buffers awailing receipt

Receive buffer size

Urgent State (urgent or not urgent)

User timeout

Once more, it is important to note that these formats are nolional. Implementations
which deal with buffering in different ways may or may nol need to include buffer
addresses in some responses, for example.

25.3 Event Codes

The event code specifies the parlicular event that the TCP wishes to communicate to the
user, Generally speaking, non-zero event codes indicate important state changes or

errors.

In addition to the event code, two flags may be useful to classify the event into major
categories and facilitate event processing by the user:

E flag: sel if even! is an error
P flag: set if permanent error (otherwise, retry may succeed)

Events are encoded in B bits, the two high order bits being reserved for E and P flags,
respeclively.

Cerf & Postel ' ' [Page 15]



January 1978

TCP-3 Specificalion
The TCP interface To The User

Events specified so far are listed below with their codes and fiag settings.

flags code meaning
] peneral success
E,P 1 connection illegal for this process
2 unspecified foreign socket has
become bound
E,P 3 connection not OPEN
4 insufficlient resources
E 5 foreign socket not specified
E,P B connection already OPEN
E 7 buffer size not acceptible
8 unused
E.,P 9 user timeout, connection aborted
1 unused
11 user urgent indication received
P 12 connection closing
E 13 general error
P 14 connection reset

P{tssible.respumﬁ to each of the user commands are listed below. Section 4.2.9 offers
substantially more detail.

Typa B I[generall: 2, -2 i d b by bt s 17
Type 1 [openl: g,1, 4, B, 13
Tupe 2 Iclosel: BraEs 3 9, 13,14
Type 3 [urgent]: g,1, 3,4,5, 9, 12,13, 14
Type 4 [Abortl: 8,1, 3, 13
Type 18 [sendl: B,1, 3.4,5, 3, 12,13, 14
Tupe 28 [receivel: 8,1, 3.4, {E = 12,13,14
Bl T 13

Tupe 38 [statusl:

[Page 16] ' Cerf & Poste!



January 1978
TCP-3 Specification

Higher Level Protecols

3, HIGHER LEVEL PROTOCOLS
3.1 Introduction

It is expected that the TCP will be able to support higher level protocols efficiently. It should
be easy to interface existing ARPANET protocols like TELNET [DCA76] and FTP [DCA76]
to the TCP. Support of Network Voice Protocal, and broadcast protocols, for example, has
been left to version 4 TCP,

3.2 Well Known Sockels

Well known sockels are a convenient mechanism for a priori associating a socket name with
a standard service. For instance, the "telnet-server" process might be permanently assigned
to a particular socket, and other sockets might be reserved for File Transfer, Remote Job
Entry, text generator, reflector, and sink (the three being for test purposes). A socket name
might be reserved for access to a "look-up” service which would return the specific socket
at which a newly created service would be provided. -

For compatibility with ARPANET socket naming conventions, we refer to the list of assigned
sockets in RFC 739 [Postel77]. :

TCP implementors should note, however, that the gender and directionality of NCP sockets
do nol apply to TCP sockets, so that even numbered as well as odd ones can serve as well
known sockets.

3.3 Reconnection Protocol

Port identifiers fall into two categories: permanent and transient. For example, a
Telnet-server process is generally assigned a port identifier that is fixed and well known.
Transient processes will in general have port identifier’s which are dynamically assigned.

In a distributed processing environment, two processes that don't have well known port
Identifiers may often wish to communicate. This can be achieved with the help of a well
known process using a reconneclion protocol. Such a protacol is briefly outlined using the
communication facilities provided by the TCP. It essentially provides a mechanism by which
port identifiers are exchanged in order to eslablish a connection between a pair of sockets.

Such a protocol can be used to achieve the dynamic esiablishment of new connections in
order to have mulliple processes solving a problem co-operatively, or to provide a user
process access to a server-application process via a server-exec process, when the
server-exec's end of the connsclion can not be invisibly passed lo the server-application
process.

A paper on this subject by R. Schantz [Schanlz74] discusses some of the issues

Cerf & Postel [Page 17]



January 1978

TCP-3 Specification
Higher Leval Protocols

associated with reconnection, and some of the ideas contained therein went inlo the design
of the protocol outlined below.

In the ARPANET, a protocol (called the Initial Connection Protocol [Postel72]) was
implemented which would allow a process to connect to a well known socket, thus making
an implicit request for service, and then be switched to another socket so that the well
known socket could be freed for use by olhers. Since sockets in our TCP are permitted to
participatle in more than one connection name, this facility may not be explicitly needed (i.e.
connections <A,B> and <A,C> are distinguishable).

Howaver, the well known sacket may be in one network and the actual service sockel(s) may
be in another network {or at least in another TCP). Thus, the invisible switching of a
connecltion from one port to another within a TCP may not be sufficient es an "initial
Connection Protocol”. Let Nx be a network identifier, and Tx be a TCP identifier. We
imagine that a process wishes to use socket NL.T1.Q to access well known socket N2 T2.P.
However, the process associated with socket N2.T2P will actually start up a new process
somewhere which will use N3.T3.5 as its server socket. The N(i} and T(i} may be distinct or
the same. The user will send to N2T2.P the relevant user information such as user name,
password, and account. This intermediate server will start up the actual server process and
send to NLTL.Q the actual service socket identifier: MN3.T3S5. The connection
(NL.T1.QN2T2P) can then be «closed, and the wuser can do a RECEWVWE on
(NL.T1.QN3.T3.5). The serving process can SEND on (M3.T3SNLT1.Q). There are many
variations on this scheme, some invalving the user process doing a RECEWVE on a different
socket (e.g. (N1.T1.X,U.U.U)) with the server doing SEND on (N3.T3.5,N1.T1.X).

[Page 18] " Cerf & Postel



January 1978
TCP-3 Specification
Highar Leval Prolocols

Without showing all the detail of synchronization of szquence numbers and the like, we can
iHustrate the exchange as shown below.

USER SERYER
1.RECEIVE (N2,72.P,U.U, W)
1. SENDIN1.T1.Q,N2.72.P)==>
<== 2, SEND{NZ.TZ.P,N1.T1.00
: With "N3.73.5" as data
2. RECEIYE(N1.T1.04,N2.T72.P)
3. CLOSE(N1.T1.Q,N2.T2.P) ==>
<== 3, CLOSE(N2.T2.P,N1.T71.0Q)
4. RECEIVE(N1.T1.0Q,N3.T73.5)
<== 4, SEND{N3.T3.S5,N1.T1.Q)
Reconnection Protocol Example
Figure 3.3-1

At this point, a connection is open between N1.T1.Q and N3.T3.5. A variation might be to
have the user do an extra RECEIVE on (NLT1.X,UUU) and have the data "NL.TLX" be
sent in the first user SEND. Then, the server can start up the real serving process and do a
SEND on (N3.T3.5MN1.T1.X) without having to send thec "M3.7T3.5" data to the user. Or
perhaps both server and receiver exchange this data, to assure security of the ultimate
connection (i.e. some wild process might try to connect to NLTLX if it is merely
RECEIVING on fareign socket UULL).

We do not propose any specific reconnection protocol here, but leave this to further
deliberation, since it is really a user level protocol issus.

Further work on reconnection is in progress and version 4 of TCP may include provisions for
reconnection via TCP control exchanges.

Cerf & Postel L [Page 19]



January 1978
TCP-3 Specificalio
TCP Design :

[P ; 20] ; "~ Cerf & Postel
age :



January 1978
TCP-3 Specification
TCP Design

4. TCP DESIGN

4.1 Introduction

The TCP is designed to offer highly reliable, sequanced, and flow-conlrolled interprocess

- communication across network boundaries. A fundamental notion in the design is that every
octet (8 bit byte) of data in an internetwork packet has a sequence number. Since every
octet is sequenced, each of them can be acknowledged individually or collectively. In
particular, the acknowledgment mechanism employed is cumulative so that an
acknowledgment of sequence number X indicates that all octets up to but not including X
have been received. This mechanism allows for straight-forward duplicale detection in the
presence of retransmission.

This also permits gateways lo fragment packets as needed to get them across networks
with short packet sizes. There is current discussion of how and where fragmentation
should be done, and it may be that in version 4 TCP fragmentation is removed with the
view that it is an internet function not specific to TCP,

It is essential to remember that the actual sequence number space is finite, though very
large. In the current design, this space ranges from 0 to 2++¢32 - |, Since the space is
finite, all arithmetic dealing with sequence numbers must be performed modulo 2#+¢32. This
unsigned arithmetic preserves the relationship of sequence numbers as they cycle from
2#x32 - 1 to O again. The typical kinds of sequence number comparisons which the TCP
must perform include:

(a) determining that an ac'knowledgemant refers to some sequence number sent but not
yet acknowledged. :

(b) delermining that all sequence numbers occupied by a packet have been
acknowledged (e.g. to remove the packet from a retransmission queue).

(c) determining that an incoming packet contains sequence numbers which are expected
(i.e. that the packet "overlaps” the receive window).

The TCP typically maintains status information about each connection, es is illustrated in
figure 4.1-1, below.

Cerf & Postel ' [Paze 21]



January 1978

TCP-3 Specificalion
TCP Dasizn
5
older sequence numbers newer sequence numbers
[ | L I A -} ‘ g
Ml T1 Hz 12 HI T3 :
<----=- gequence space ----->

TCP State Information for Sending Sequence Space
Figure 4.1-1

L = oldest, unacknowledged sequence numba-r

S = next sequence number to be sent

A = acknowledgement {nexl sequence number expected I':w the acknowledging TCP) ‘\

H(i} = first sequence nuniber of the i-th packet

T(i} = last sequence number of the i-th packet
An acceplable acknowledgement, A, is one for which the inequality below holds:

O<{A-Ly<=(5-1L) (4.1-1)
We will often write equation (4.1-1} in the form below:

L<A<=5 1 . {4.1-1%)

Note that all arithmetic is modulo 2##32 and that comparisons are unsigned. "<=" means

"less than or equal.”

Similarly, the determination that a particular packet has been fulfy-nckﬁowladged can be
made if the equation below holds:

0<(TEH-L)<(A-L) (4.1-2)

[Page 22] " Cerf & Postel



January 1978

———

TCP-3 Specification
TCP Design
In this instance, H(i) end T(i} are related by the equation:
T{i) = H{i) + nfi} - 1 (4.1-3)
where n(l} = the number of octets occupied by tre data in the packet. It is important to
note that n(i) must be non-zero; packets which ¢o not occupy any sequence space (e.g.
empty acknowledgement packets) are never placed on the retransmission gueus, so
waould not go through this particular test,
Finally, a packet is judged to occupy a portion of valid receive sequence space if
O0<=(T-N)<{(R-N) - (4.1-4)
Where T is the last sequence number occupled by the packel, N is the next sequence
number expecled on an incoming packet, and R is the right edge of the receive window,
as shown in figure 4.1-2,
older sequence numbers newer seguence numbers
/
Y
H 4
Hl1 Tl H2 T2 n3 13

Receive Sequence State Information
Figure 4.1-2
N = next sequence number expected on incoming packets
R = last sequence number expecled on incoming packsls, plus one
H(i} = first sequence number occuplied by the i-th incoming packet

T(i) = last sequence number occupied by the i-th incoming packst

Cerf & Postel ' [Page 23]



January 1978

TCP-3 Specification
TCP Dasign

R and M in figure 4.1-2 are related by the equation:
Re=N+W (4.1-5)

Where W = the receive window size

Note that the acceptance test for a packet, since it requires the end of a packet to lie in the
window, is somewhat more restrictive than is absolutely necessary. |If at least the first
sequence number of the packet lies in the receive window, or if some part of the packet lies
in the receive window, then the packet might be judged acceptable. Thus, in figure 4.1-2, at
least packets 1 (H(1)-T(1)} and 2 (H(2)-T(2)) are acceptable by the strict rule and packet 3,
{H(3)-T(3)) may or may not be, depending on the strictness of interpretation of the rule.

- Note that when R = N, the receive window is zero and no packels should be acceptable
except ACK packets. Thus, it should be possible for a TCP to mainlain a8 zero receive
window while transmilting dala and receiving ACKs on a non-zero send window.

We have taken advaniage of the numbering scheme to protect certain control information as
well. This is achieved by implicitly including some control flags in the sequence space so
they can be retransmilled and acknowledged without confusion (i.e. one and only one copy
of the control will be acted upon). Contral infarmation is not physically carried in the packet
data space (see seclion 4.3.2 for typical internet TCP packet format). Consequently, we
must adopt rules for implicitly assigning sequence numbers to control. In version 3 these
sequenced controls have been reduced to only the SYN and FIN controls which are used
only at connection opening and closing. For sequente number purposes, the SYN is
considered to occur before the first actual data octet of the packet in which it occurs, while
the FIM is considered to occur after the last actual data octet in a packet in which it occurs.

The packet length includes both data and sequence-space-occupying controls.
The main jobs of the TCP are:
a, Connection management {establishing and closing full-duplex connections)
b. "Packetizing” of user letters into segments for internet transmission

¢. Reassembly of fragments into segments and segments into letters. (Note that the
reassembly of fragments into segments may become an internet protocol function and of

no concern to TCP in version 4.)
d. Flow control, sequencing, duplicate detection, and retransmission for each connection.
e. Reacting to user requests for service

In the sections which follow, we elaborate on the way in which the TCP is designed to carry
out each of these tasks.

[Page 24] : Cerf & Postel



January 1978
TCP-3 Specification
TCP Dasign

4.2 Connection Management
4.2.1 Initial Sequence Number Selection

The prolocol places no restriction on a particular connection being used over and over
again. New instances of a connection will be referred to as incarnations of the connection.
The problem that arises owing to this is, "how does the TCP identify duplicate packets
from previous incarnations of the connection?, This problem becomes harmfully
apparent if the connection is being opened and closed in quick succession, or if the
connection breaks wilh loss of memory and is then reestablishad.

The essence of the solution [Tomlinson74] is that the initial sequence number [ISN]
must be chosen so that a particular sequence number can never refer to an "old" octetl.
-Once the connection is established the sequencing mechanism provided by the TCP
filters out duplicates.

For a connection to be established or initialized, the two TCP's must synchronize on each
other’s initial sequence numbers. This is done in an exchange of connection establishing
messages carrying a control bit called "SYN" (for synchronize) and the initial sequence
numbers, as a shorthand messages carrying the SYN bit are also called "SYNs". Hence
the solution requires a suitable mechanism for picking an initial sequence number, and a
slightly involved handshake to exchange the ISN's. A "three way handshake” is necessary
because sequence numbers are not tied to a global clock in the network, and TCP's may
have different mechanisms for picking the ISN's. The receiver of the first SYN has no way
"of knowing whether the packet was an old delayed one or nol, unless it remembears the
last sequence number used on the connection (which is not always possible), and so it
must ask the sender to verify this SYN.

The "three way handshake” and the advantages of a "clock-driven” scheme are
discussed in [Tomlinson74). More on the subject, and algorithms for implementing the
clock-driven scheme can be found in [Dalal74, Dalal75, Cerf76b]

4.2.2 Establishing a connection

The "three-way handshake" is essentially a  unidirectional atiempt to establish a
conneclion, i.e. there is an Initialor and a responder. The TCP can also establish a
connection when a simultanecus initiation eccurs. A simultansous attempt occurs when
one TCP receives a "SYN" packet which carries no acknowledgement after having sent a
"SYN" earlier. Of course, the arrival of an old duplicate "SYN" packet can potentially
make it eppear, 1o the recipient, that a simultaneous connection initiation is in progress,
Proper use of "resel” packets can disambiguaste these cases. Several examples of
connection initiation are offered below, using a notation due to Tomlinson. Although
these examples do not show connection synchronization using data-carrying packels, this
_ is perfectly legitimate, so long as the recelving TCP doesn't deliver the data to the user

Cerf & Postel : [Page 25]



TCP-3 Specif
TCP Design

ication

January 1978

until it is clear the data is valid (i.e. the data must be buffered at the receiver until the
connection reaches the ESTABLISHED state (see figure 4.2-1}).

CLOSED
CLOSE
Delete TCB
OPEN CLOSE
Create TCB Delete TCB
)
OPEN
Aev SYN SENO or UIRG
Snd SYN,ACK nd SYN
_Rev SYN
SYN Snd ACK . S¥YN
RCYD L. - SENT
E_,-.- < —Bev SYN,ACK
e Ol OGE. ESTAB Snd ACK
Snd FIN
~LLOSE_ Hey FIN
A < Snd FIN Snd ACK —

FIN CLOSE
WAIT WAIT
JicLF_LH_\ & :/h;_;f_

Snd ACK CLOSING Snd FIN
Bov ACK of FIN —timeout
Delete u:e/ ABORT

[Page 26]

TCP Connection State Diagram

Figure 4.2-1

Cerf & Postel



e

January 1978
TCP-3 Specification
TCP Design

Tha simplest three-way handshake is shown in fizure 4.2-2 below. The figures should be
interpreted in the following way. Each line is numbared for reference purposes. Right
arrows (-->) indicate departure of a TCP packe! from TCP A to TCP B, or arrival of a
packet at B from A. Left arrows (<--), indicate the reverse. Ellipsis (...} indicates a packet
which is still in the network (delayed). An "X3X" indicates a packet which is lost or
rejected. Comments appear in parentheses. TCP states are keyed to those in figure
4.2-1, and represent the stale AFTER the departure or arrival of the packet {whose
contents ere shown in the center of each line). Packe! contenis are shown in abbreviated
form, with sequence number, control flags, and ACK field. Other fields such as window,
addresses, lengths, and text have been left out, genaraily, in the interest of clarity.

TCP A TCP B
1. OPEN . OPEN
2. SYN-SENT --> <SE0 188><5YN> --> SYN-RECEIVYED

3. ESTABLISHED <-- <SEQ 3B88><SYN><ACK 181> <-- SYN-RECEIYED
4. ESTABLISHED --»> <SEQ 181><ACK 381> --> ESTABL ISHED
S. ESTABLISHED --»> <SE0 1B1><ACK 381><CATA> --» ESTABLISHED
Basic 3-Way Handsh_ake for Connection Synchronization
Figure 4.2-2

In line 2 of figure 4.2-2, TCP A begins by sendinz a SYN packel indicating that it will use
sequence numbers starting with sequence number 100. In line 3, TCP B senge a SYN
and acknowledges the SYN it received from TCP A. Note that (per figure 4.1-3), the
acknowledgement ficld indicates TCP B is now expecling to hear sequence 101, implicitly
acknowledging the SYN which occupied sequence 100.

At line 4, TCP A responds with an empty packet containing an ACK for TCP B's' SYN, and
in line 5, TCP A sends some data. Note that the sequence number of the packet in line
5 is the same as in line 4 because the ACK does not occupy sequence number space (if
it did, we would wind up ACKing ACK’s!).

Simullanecus initiation is only slightly mare compiax, as is shown in figure 4.2-3. Each
TCP cycles from QPEN to SYN-SENT to SYN-RECEIVED to ESTABLISHED.

The principle reason for the three-way handshaks is to prevent old duplicate connection
initiations from causing confusion. To deal with this, a special control message, RESET,
has been devised. A TCP which receives a RESET rmessage first verifies that the ACK
field of the RESET acknowledges something the TCP sent (otherwise, the message is

Cerf & Postel ' [Page 27]



January 1978

TCP-3 Specification
TCP Design

ignored). If the receiving TCP is in a non-synchronized state (l.e. SYN-SENT,
SYN-RECEIVED), it returns to OPEN on receiving an acceptable RESET. If the TCP is in
one of the synchronized states (ESTABLISHED, FIN-WAIT, CLOSE-WAIT, CLOSING) it
aborts the connection and informs its user. We discuss this latler case under

"half-open” connection in section 4.2.3.

TCP A TCP B

1. OPEN OPEN
2. SYN-SENT --> <SEQ 188><5YN>

3. SYN-RECEIVED <-- <SEQ 388><SYN> <-- SYN-SENT

&, ++s <SEO 188><SYN> --> SYN-RECEIVED

5. SYN-RECEIVED --» <SEQ 1B1><ACK 381> ...

B. ESTABLISHED <-- <SE0 3B1><ACK 181> <-- SYN-RECEIVED

7. ..+ <SEQ 181><ACK 381> --»> ESTABLISHED
Simultaneous Cnnnec-tion Synchronization

Figure 4.2-3

[Page 28] ' Cerf & Postel



January 1978
TCP-3 Specification
TCP Design

JERAT T TCP B
1. OPEN ' OPEN
Z. SYN-SENT ~-> <5E0 188><5YN> Sl
3. (duplicate) ... <SEQ 188@><SYN> —-> SYN-RECEIVED

&. SYN-SENT <== <5E0 3BB><SYN><ACK 1881> <-- SYN-RECEIVED

5. SYN=SENT --> <SE0 1BBl><RST><ACK 381> --» OPEN
(ACK is ok)
B. « oo <BEQ 188><5YN> --» SYN-RECEIVED

7. SYN-SENT <-- <5EQ 4BB><SYN><ACK 18l> <-- SYN-RECEIVED
8. ESTABLISHED --> <SEQ 1B1><ACK 481> —-> ESTABLISHED
Recovery from Old Duplicale SYN

Figure 4.2-4

As a simple example of recovery from old duplicates, consider figure 4.2-4. At line 3,
and old duplicate SYN arrives at TCP B. TCP B cannot tell that this is an old duplicate,
50 it responds normally (line 4). TCP A delects that the ACK field is incorrect and
returns a RST (reset) with its SEQ and ACK fields selected to make the packet believable.
TCP B, on receiving the RST, returns to the OPZN state. When the original SYN (pun
intended) finally arrives alt line 6, the synchronizaiion proceeds normally. If the SYN at
line 6 had arrived before the RST, a more complsx exchange might have occurred with
RST’s sent in both directions.

4.2.3 Half-Open Connections and Other Anomalies

An established conneclion is said to be "half-open” if one of the TCP's has closed or
aborted the connection at its end without the knowledge of the other, or if the two ends
of the connection have become desynchronized owing to a crash that resulted in loss of
memory. Such connections will automatically become reset if an attempt is made to send
data in either direction. However, half-open conneclions are expected to be unusual, and
the recovery procedure is mildly involved.

If at site A the connection no longer exists, then an attempt by the user at site B to send

Cerf & Postel ' [Page 29]



Januvary 1978

TCP-3 Specification
TCP Design

any data on it will result in the site B TCP receiving a RESET conirol message. Such a
message should indicate to the site B TCP that something is wrong and it is expected to
ABORT the connection.

Assume that two user processes A and B are communicating with one another when a
crash occurs causing loss of memory to A's TCP, Depending on the operating system
supporting A’s TCP, it is likely that some error recovery mechanism exists. When the TCP
is up again A is likely to start again from the beginning or from a recovery point. As a
result A will probably try to OPEN the connection again or try to SEND on the connection
it believes open. In the latter case it receives the error message “connection not open”
from the local TCP, In an attempt to establish the connection A's TCP will send a packet
containing SYN. This scenario leads to the example shown in figure 4.2-5. After TCP A
crashes, the user attempts to re-open the connection. TCP B, in the meantime, thinks
the connection is open.

TCP A - TCP B
18 S ERASHIE (send 388, receive 100)
2. OPEN ESTABLISHED
3. SYN-SENT —-> <SEQ 4@@><SYN> (G
G, (11) < <SEQ 388><ACK" 128> <-- ESTABLISHED

5. SYN-SENT —-> <SEQ 1B8><AST><ACK 388> --> (Abort!!)
Half-Open Conneclion Discovery

Figure 4.2-5

When the SYN arrives al line 3, TCP B, being in a synchronized state, responds with an
acknowledgment indicaling what sequence it next expects to hear (ACK 100). TCP A
sees that this packet does not acknowledge anything it sent and, being unsynchronized,
sends a reset (RST) because it has detected a half-open connection. TCP B aborts at line
5. TCP A will continue to retransmit its SYN and if the user at TCP B re-opens the
connection, eventually everything will work out,

An interesting allernative case occurs when TCP A crashes and TCP B tries to send data
on what it thinks is a synchronized connection. This is illustrated in figure 4.2-6. In this
case, the data arriving at TCP A from TCP B (line 2} is unacceptable because no such

[Page 30] ; Cerf & Postel



—

January 1978
TCP-3 Specification
TCP Design

connaction exists, so TCP A sends a RST. The RST is accepisble so TCP B processes it
and aborts the conneclion. ;

In figure 4.2-7, we find the two TCP’s A and B with passive conneclions waiting for SYM.
An old duplicate arriving at TCP B (line 2} stirs B into action. A SYN-ACK is returned
(line 3) and causes TCP A to generate a RST (the ACK in line 3 is not acceptable). TCP
B sccepts the reset and returns to its passive OPEN siate.

TCP A . TCP B
1. (CRASH) ' (send 388,receive 188)
2. (?7)  <-- <5EQ 300><ACK 188><DATA 18> <-- ESTABLISHED
as  —-> <SEQ 188><RST><ACK 318> —-> (ABORT!1)

Active Side Causes Half-Open Connaction Discovery

Figure 4.2-6
TCP A TCP B
1. OFEN ’ OPEN
P voe <SEQ Z><SYN> --> SYN-RECEIVED

3. {??) <-- <SEQ X><SYN><ACK Z+1> <-- .SYN-RECEIVED
4. —-=> <SEQ Z+1><RAS5T><ACK K+l> --> (return to OPEN!)
5. DPEN OPEN
Old Duplicate SYN Initiah-es a Reset on two Passive Sockets
Figure 4.2-7

A variety of other cases are possible, all of which are accounted for by the following rules
for RST generation and processing.

Cerf & Postal : [Page 31]



January 1978

TCP-3 Specification
TCP Design

Resel Gensration

As e general rule, reset (RST) should be sent whenever a packet arrives which
apparently is not intended for the current or a future instantiation of the connection.
A reset should not be sent if it is not clear that this is the case. Thus, it any packet
“arrives for a nonexistant connection, a reset should be sent. If a packet ACKs
something which has never been sent on the current connection, send reset,

L. If the connection is in any non-synchronized state (OPEN, SYN-SENT,
SYM-RECEIVED) or if the connection does not exist, a reset (RST) should be formed
and sent for any packet that does not acknowledge something the receiver sent
earlier., The RST should take its SEQ field from the ACK field of the offending packet
(if it has one) and its ACK field should acknowledge all data and control i